人类学学报 ›› 2022, Vol. 41 ›› Issue (06): 1097-1108.doi: 10.16359/j.1000-3193/AAS.2022.0013
• 综述 • 上一篇
收稿日期:
2021-08-13
修回日期:
2021-11-17
出版日期:
2022-12-15
发布日期:
2022-12-19
作者简介:
李小强,研究员,主要从事第四纪植被和气候、环境和生物考古研究。E-mail: 基金资助:
Received:
2021-08-13
Revised:
2021-11-17
Online:
2022-12-15
Published:
2022-12-19
摘要:
农业是文明形成和发展的基础。约1万年以前,农业在西亚、中美洲和东亚地区几乎同时独立出现。西亚的两河流域被认为是小麦、大麦、燕麦等作物的起源中心;中美洲则是玉米、马铃薯和花生等农作物的诞生地;中国拥有两套独立的原始农业系统,分别是起源于长江中下游地区的稻作农业和黄河中游地区的粟-黍旱作农业,孕育了中华农耕文明。西亚的小麦农业、东亚的稻作和粟-黍农业逐步传播到世界上大多数地区,促进了早期农业全球化。15世纪末,新航路的开辟和众多贸易路线的出现加快了欧亚大陆和美洲大陆农作物的传播和融合,加速了农业全球化进程。农业的发展改变了人类改造和适应环境的能力;促进了人类定居,导致人群结构的重大变革,出现劳动分工和商品交换等,为人类提供了稳定的食物供应及储存,推动了人口的增长。农业起源和发展极大地增强了人类活动的强度和范围,深刻地影响着全球生态和气候环境。
中图分类号:
李小强. 农业的起源、传播与影响[J]. 人类学学报, 2022, 41(06): 1097-1108.
LI Xiaoqiang. The origin, spread, and impact of agriculture[J]. Acta Anthropologica Sinica, 2022, 41(06): 1097-1108.
[1] | Bellwood PS. First Farmers: the Origins of Agricultural Societies[M]. London: Blackwell Publishing, 2005 |
[2] |
Lev-Yadun S, Gopher A, Abbo S. Archaeology-The cradle of agriculture[J]. Science, 2000, 288(5471): 1602-1603
doi: 10.1126/science.288.5471.1602 pmid: 10858140 |
[3] |
Tanno K, Willcox G. How fast was wild wheat domesticated?[J]. Science, 2006, 311(5769): 1886
doi: 10.1126/science.1124635 URL |
[4] | 布赖恩·海登. 驯化的模式[J]. 译者:陈淳. 农业考古, 1994(1): 25-40 |
[5] | Harris D. Origins of agriculture in western central Asia[D]. Philadelphia: University of Pennsylvania Museum, 2010 |
[6] | Zohary D, Hopf M. Domestication of Plants in the Old World (4th edition)[M]. Oxford: Clarenden Press, 2012 |
[7] | 严文明. 再论中国稻作农业的起源[J]. 农业考古, 1989(1): 85-93 |
[8] | 张光直. 中国东南海岸的“富裕的食物采集文化”[A]. 见:中国考古学会(主编).中国考古学论文集[C]. 北京: 生活·读书·新知三联书店, 1999: 190-205 |
[9] | Childe VG. The Most Ancient East[M]. London: Routledge and Kegan Paul, 1928 |
[10] | Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life[M]. London: John Murray, 1859 |
[11] | Pumpelly R. Explorations in Turkestan, Expedition of 1904: Prehistoric Civilizations of Anau: Origins, Growth, and Influence of Environment[M]. Washington DC: Carnegie Institution of Washington, 1908, 65-66 |
[12] | Childe G. Man Makes Himself[M]. New York: New American Library, 1951 |
[13] | Wittfogel K. Oriental Despotism[M]. New Haven: Yale University Press, 1957 |
[14] | Braidwood RJ. The agricultural revolution[J]. Scientific American, 1960, 203(3): 130-141 |
[15] | Binford L. Post-pleistocene adaptations[A]. In: Binford S, Binford L (Eds.). New Perspectives in Archaeology[M]. Chicago: Aldine, 1968, 313-341 |
[16] | Harlan JR. Crops and Man[M]. Madison: American Society of Agronomy, 1975 |
[17] |
Diamond J. Evolution, consequences and future of plant and animal domestication[J]. Nature, 2002, 418(6898): 700-707
doi: 10.1038/nature01019 URL |
[18] | Cohen MN, Armelagos GJ. Paleopathology at the origins of agriculture[M]. Orlando: Academic Press, 1984 |
[19] |
Rosenberg M. The mother of invention: Evolutionary heory, territoriality, and the origins of agriculture[J]. American Anthropologist, 1990, 92(2): 399-415
doi: 10.1525/aa.1990.92.2.02a00090 URL |
[20] | Fernandez-Armesto F. Civilizations:Culture, Ambition, and the Transformation of Nature[M]. London: Basingstoke and Oxford, 2000 |
[21] | Tudge C. Neanderthals, bandits, and farmers: How agriculture really began[M]. New Haven: Yale University Press, 1998 |
[22] | Olsson O. The rise of Neolithic agriculture[J]. Working Papers in Economics, 2001, 196(6): 647-648 |
[23] | Boserup E. The Conditions of Agricultural Growth[M]. London: Allen and Unwin, 1965 |
[24] | Cohen MN. The Food Crisis in Prehistory[M]. New Haven: Yale University Press, 1977 |
[25] |
Bar-Yosef O, Belfer-Cohen A. The origins of sedentism and farming communities in the Levant[J]. Journal of World Prehistory, 1989, 3(4): 447-498
doi: 10.1007/BF00975111 URL |
[26] |
Bar-Yosef O. Climatic fluctuations and early farming in West and East Asia[J]. Current Anthropology, 2011, 52(S4): S175-S193
doi: 10.1086/659784 URL |
[27] |
McCorriston J, Hole F. The ecology of seasonal stress and the origins of agriculture in the Near East[J]. American Anthropologist, 1991, 93(1): 46-69
doi: 10.1525/aa.1991.93.1.02a00030 URL |
[28] |
Sage RF. Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture?[J]. Global Change Biology, 1995, 1(2): 93-106
doi: 10.1111/j.1365-2486.1995.tb00009.x URL |
[29] |
Richerson PJ, Boyd R, Bettinger RL. Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis[J]. American Antiquity, 2001, 66(3): 387-411
doi: 10.2307/2694241 URL |
[30] | 肯特·弗兰纳利. 美索不达米亚早期食物生产的生态学——史前农人与牧人开发一系列位置相邻却差异显著的气候区[J].译者:潘艳.校对:陈淳. 南方文物, 2008(4): 135-141+133 |
[31] | Flannery KV. Guilá Naquitz: Archaic Foraging and Early Agriculture in Oaxaca, Mexico[M]. Orlando: Academic Press, 1986 |
[32] |
MacNeish RS. Ancient Mesoamerican civilization[J]. Science, 1964, 143(3606): 531-537
pmid: 17815643 |
[33] | MacNeish RS. Reflections on my search for the beginnings of agriculture in Mexico[A]. In: Wolley GR. Archaeological Researches in Retrospect[M]. Washington DC: University Press of America, 1974 |
[34] | Flannery KV. The origins of the village as a settlement type in Mesoamerica and the Near East:A comparative study[A]. In: Ucko PJ, Tringham R, Dimbleby GW (Eds.). Man, Settlement and Urbanism[M]. London: Duckworth, 1972, 23-53 |
[35] |
Piperno D, Ranere AJ, Holst I, et al. Starch grains reveal early root crop horticulture in the Panamanian tropical forest[J]. Nature, 2000, 407(6806): 894-897
doi: 10.1038/35038055 URL |
[36] | Piperno DR. Identifying manioc (Manihot esculenta Crantz) and other crops in pre-Columbian tropical America through starch grain analysis:A case study from Panama[A]. In: Zeder M, Emschwiller E, Bradley D, et al (Eds.). Documenting Domestication: New Genetic and Archaeological Paradigms[M]. Berkeley: University of California Press, 2006, 46-67 |
[37] | 严文明. 中国稻作农业的起源[J]. 农业考古, 1982(1): 19-31 |
[38] | 吕厚远. 中国史前农业起源演化研究新方法与新进展[J]. 中国科学(地球科学), 2018, 48(2): 181-199 |
[39] |
Li XQ, Dodson J, Zhou XY, et al. Early cultivated wheat and broadening of agriculture in Neolithic China[J]. The Holocene, 2007, 17(5): 555-560
doi: 10.1177/0959683607078978 URL |
[40] |
Zhang JP, Lu HY, Wu NQ, et al. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis)[J]. PLoS ONE, 2011, 6(5):e19726
doi: 10.1371/journal.pone.0019726 URL |
[41] | Fuller DQ, Castillo C. Rice:Origins and development[A]. In: Smith, Claire (Eds.). Encyclopedia of Global Archaeology[M]. New York: Springer, 2014 |
[42] | Huan XJ, Lu H, Wang C, et al. Bulliform phytolith research in wild and domesticated rice paddy soil in South China[J]. PloS ONE, 2015, 10(10): e0141255 |
[43] |
Ball T, Chandler-Ezell K, Dickau R, et al. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world[J]. Journal of Archaeological Science, 2016, 68: 32-45
doi: 10.1016/j.jas.2015.08.010 URL |
[44] |
Zheng Y, Crawford GW, Jiang L, et al. Rice domestication revealed by reduced shattering of archaeological rice from the Lower Yangtze valley[J]. Scientific Reports, 2016, 6(1): 1-9
doi: 10.1038/s41598-016-0001-8 URL |
[45] | 何炳棣, 马中. 中国农业的本土起源[J]. 农业考古, 1984(2): 43-52 |
[46] | 安志敏. 中国的史前农业[J]. 考古学报, 1988(4): 369-381 |
[47] |
Lu HY, Zhang JP, Liu KB, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago[J]. Proceedings of the National Academy of Sciences, 2009, 106(18): 7367-7372
doi: 10.1073/pnas.0900158106 URL |
[48] |
Crawford G, Underhill A, Zhao Z, et al. Late Neolithic plant remains from northern China: Preliminary results from Liangchengzhen, Shandong[J]. Current Anthropology, 2005, 46(2): 309-317
doi: 10.1086/428788 URL |
[49] | 赵志军. 植物考古学及其新进展[J]. 考古, 2005(7): 42-49+2 |
[50] |
Underhill AP. Current issues in Chinese Neolithic archaeology[J]. Journal of World Prehistory, 1997, 11(2): 103-160
doi: 10.1007/BF02221203 URL |
[51] | 严文明. 农业发生与文明起源[M]. 北京: 科学出版社, 2000 |
[52] |
Liu L, Bestel S, Shi J, et al. Paleolithic human exploitation of plant foods during the last glacial maximum in North China[J]. Proceedings of the National Academy of Sciences, 2013, 110(14): 5380-5385
doi: 10.1073/pnas.1217864110 URL |
[53] |
Yang XY, Wan ZW, Perry L, et al. Early millet use in northern China[J]. Proceedings of the National Academy of Sciences, 2012, 109(10): 3726-3730
doi: 10.1073/pnas.1115430109 URL |
[54] |
Hadiarto T, Tran LSP. Progress studies of drought-responsive genes in rice[J]. Plant Cell Reports, 2011, 30(3): 297-310
doi: 10.1007/s00299-010-0956-z pmid: 21132431 |
[55] | 严文明. 我国稻作起源研究的新进展[J]. 考古, 1997(9): 71-76 |
[56] | 顾海滨. 湖南澧县城头山遗址出土的新石器时代水稻及其类型[J]. 考古, 1996(8): 81-89+104 |
[57] | 朱乃诚, 中国史前稻作农业概论[J]. 农业考古, 2005(1): 26-32 |
[58] | 郑云飞, 蒋乐平. 上山遗址出土的古稻遗存及其意义[J]. 考古, 2007(9): 19-25+99+2 |
[59] | 赵志军, 蒋乐平. 浙江浦江上山遗址浮选出土植物遗存分析[J]. 南方文物, 2016(3): 109-116 |
[60] |
Fuller DQ, Qin L, Zheng Y, et al. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze[J]. Science, 2009, 323(5921): 1607-1610
doi: 10.1126/science.1166605 pmid: 19299619 |
[61] | 赵志军. 中国稻作农业起源研究的新认识[J]. 农业考古, 2018(4): 7-17 |
[62] | 秦岭. 中国农业起源的植物考古研究与展望[J]. 考古学研究, 2012: 260-315 |
[63] | Oka HI. Origin of Cultivated Rice[M]. Elsevier, 2012 |
[64] |
Chang TT. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rice[J]. Euphytica, 1976, 25(1): 425-441
doi: 10.1007/BF00041576 URL |
[65] |
Sato YI, Ishikawa R, Morishima H. Nonrandom association of genes and characters found in indica × japonica hybrids of rice[J]. Heredity, 1990, 65(1): 75-79
doi: 10.1038/hdy.1990.72 URL |
[66] |
Londo JP, Chiang YC, Hung KH, et al. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa[J]. Proceedings of the National Academy of Sciences, 2006, 103(25): 9578-9583
doi: 10.1073/pnas.0603152103 URL |
[67] | 王象坤, 才宏伟, 孙传清, 等. 中国普通野生稻的原始型及其是否存在籼粳分化的初探[J]. 中国水稻科学, 1994, 8(4): 205-210 |
[68] |
Gross BL, Zhao Z. Archaeological and genetic insights into the origins of domesticated rice[J]. Proceedings of the National Academy of Sciences, 2014, 111(17): 6190-6197
doi: 10.1073/pnas.1308942110 URL |
[69] |
Fuller DQ, Van Etten J, Manning K, et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: An archaeological assessment[J]. The Holocene, 2011, 21(5): 743-759
doi: 10.1177/0959683611398052 URL |
[70] |
Fuller DQ, Asouti E, Purugganan MD. Cultivation as slow evolutionary entanglement: Comparative data on rate and sequence of domestication[J]. Vegetation History and Archaeobotany, 2012, 21(2): 131-145
doi: 10.1007/s00334-011-0329-8 URL |
[71] | Bellwood P. Examining the farming / language dispersal hypothesis in the East Asian context[A]. In: Blench R, Laurent S, Alicia S (Eds.). The Peopling of East Asia: Putting Together Archaeology, Linguistics and Genetics[M]. Routledge, 2005: 17-30 |
[72] |
Ammerman AJ, Cavalli-Sforza LL. Measuring the rate of spread of early farming in Europe[J]. Man, 1971, 6(4):674-688
doi: 10.2307/2799190 URL |
[73] |
Liu XY, Jones PJ, Matuzeviciute GM, et al. From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory[J]. Quaternary Science Reviews, 2019, 206: 21-28
doi: 10.1016/j.quascirev.2018.12.017 URL |
[74] |
Jones MK, Liu XY. Origins of agriculture in East Asia[J]. Science, 2009, 324(5928): 730-731
doi: 10.1126/science.1172082 URL |
[75] |
Zhou XY, Yu JJ, Spengler RN, et al. 5200-year-old cereal grains from the eastern Altai mountains redate the trans-Eurasian crop exchange[J]. Nature Plants, 2020, 6(2): 78-87
doi: 10.1038/s41477-019-0581-y URL |
[76] | 赵志军. 小麦传入中国的研究—植物考古资料[J]. 南方文物, 2015, (3): 44-52 |
[77] |
Dodson JR, Li XQ, Zhou XY, et al. Origin and spread of wheat in China[J]. Quaternary Science Reviews, 2013, 72: 108-111
doi: 10.1016/j.quascirev.2013.04.021 URL |
[78] |
Zhou XY, Li XQ, Dodson J, et al. Rapid agricultural transformation in the prehistoric Hexi corridor, China[J]. Quaternary International, 2016, 426: 33-41
doi: 10.1016/j.quaint.2016.04.021 URL |
[79] |
Yang QJ, Zhou XY, Spengler RN, et al. Prehistoric agriculture and social structure in the southwestern Tarim Basin: Multiproxy analyses at Wupaer[J]. Scientific Reports, 2020, 10(1): 1-11
doi: 10.1038/s41598-019-56847-4 URL |
[80] | 张居中, 程至杰, 蓝万里, 等. 河南舞阳贾湖遗址植物考古研究的新进展[J]. 考古, 2018, (4): 100-110 |
[81] |
Jin GY, Wu WW, Zhang KS, et al. 8000-year-old rice remains from the north edge of the Shandong Highlands, East China[J]. Journal of Archaeological Science, 2014, 51: 34-42
doi: 10.1016/j.jas.2013.01.007 URL |
[82] |
Jin GY, Chen S, Li H, et al. The Beixin Culture: Archaeobotanical evidence for a population dispersal of Neolithic hunter-gatherer-cultivators in northern China[J]. Antiquity, 2020, 94(378): 1426-1443
doi: 10.15184/aqy.2020.63 URL |
[83] | Zhang JP, Lu HY, Wu NQ, et al. Phytolith evidence for rice cultivation and spread in Mid-Late Neolithic archaeological sites in central North China[J]. Boreas, 2010, 39(3): 592-602 |
[84] |
Deng ZH, Hung H, Fan XC, et al. The ancient dispersal of millets in southern China: New archaeological evidence[J]. The Holocene, 2018, 28(1): 34-43
doi: 10.1177/0959683617714603 URL |
[85] |
Yang XY, Wang W, Zhuang Y, et al. New radiocarbon evidence on early rice consumption and farming in South China[J]. The Holocene, 2017, 27(7): 1045-1051
doi: 10.1177/0959683616678465 URL |
[86] |
Chen GH, Zhou XY, Wang J, et al. Kushan period rice in the Amu Darya Basin: Evidence for prehistoric exchange along the southern Himalaya[J]. Science China Earth Sciences, 2020, 63(6): 841-851
doi: 10.1007/s11430-019-9585-2 URL |
[87] |
He KY, Lu HY, Zhang JP, et al. Prehistoric evolution of the dualistic structure mixed rice and millet farming in China[J]. The Holocene, 2017, 27(12): 1885-1898
doi: 10.1177/0959683617708455 URL |
[88] | Wang J, Zhou XY, Xu H, et al. Relationship between C4 biomass and C4 agriculture during the Holocene and its implications for millet domestication in Northeast China[J]. Geophysical Research Letters, 2021(48): e2020GL089566 |
[89] | Luo W, Gu C, Yang Y, et al. Phytoliths reveal the earliest interplay of rice and broomcorn millet at the site of Shuangdun (ca. 7.3-6.8 ka BP) in the middle Huai River valley, China[J]. Journal of Archaeological Science, 2019(102): 26-34 |
[90] |
Jones M, Hunt H, Lightfoot E, et al. Food globalization in prehistory[J]. World Archaeology, 2011, 43(4): 665-675
doi: 10.1080/00438243.2011.624764 URL |
[91] |
Liu XY, Jones MK. Food globalisation in prehistory: Top down or bottom up?[J]. Antiquity, 2014, 88(341): 956
doi: 10.1017/S0003598X00050912 URL |
[92] | Yao Y, Wang X, Guo W, et al. Environment human activity and their relationship with Buddhism during the 9th-13th centuries at Turpan, Xinjiang on the ancient Silk Road[J]. Vegetation History and Archaeobotany, 2020(29): 539-552 |
[93] | 张波, 张纶. 中国绿洲-东西亚古代农事交流的纽带[J]. 中国农史, 1993(4): 7-12 |
[94] | 王思明. 丝绸之路农业交流对世界农业文明发展的影响[J]. 内蒙古社会科学(汉文版), 2017(3): 1-8 |
[95] | Chen T, Wang B, Power R, et al. The first archaeobotanical evidence of Medicago sativa L. in China: Hay fodder for livestock[J]. Archaeological and Anthropological Sciences, 2020(12): 2 |
[96] | 刘东生. 走向“地球系统”的科学:地球系统科学的学科雏形及我们的机遇[J]. 中国科学基金, 2006(5): 266-271 |
[97] |
Ruddiman WF, Guo Z, Zhou X, et al. Early rice farming and anomalous methane trends[J]. Quaternary Science Reviews, 2008, 27(13-14): 1291-1295
doi: 10.1016/j.quascirev.2008.03.007 URL |
[98] |
Crutzen PJ. Geology of mankind[J]. Nature, 2002, 415(1): 23
doi: 10.1038/415023a URL |
[99] |
Diamond J, Bellwood P. Farmers and their languages: The first expansions[J]. Science, 2003, 300(5619): 597-603
pmid: 12714734 |
[100] |
Zong Y, Chen Z, Innes JB, et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China[J]. Nature, 2007, 449(7161): 459-462
doi: 10.1038/nature06135 URL |
[101] |
Li XQ, Dodson J, Zhou J, et al. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000 BP[J]. Quaternary International, 2009, 202(1-2): 41-50
doi: 10.1016/j.quaint.2008.02.009 URL |
[102] | Kirch PV. Archaeology and global change: The Holocene record[J]. Annual Review of Environment and Resources, 2005(30): 409-440 |
[103] | Rollefson G, Kohler-Rollefson I. Early Neolithic exploitation patterns in the Levant: cultural impact on the environment[J]. Population and Environment, 1992(13): 243-254 |
[104] |
Liu B, Wang, NY, Chen MH, et al. Earliest hydraulic enterprise in China, 5100 years ago[J]. Proceedings of the National Academy of Sciences, 2017, 114 (52): 13637-13642
doi: 10.1073/pnas.1710516114 URL |
[105] |
Zheng YF, Sun GP, Li Q, et al. Rice fields and modes of rice cultivation between 5000 and 2500 BC in east China[J]. Journal of Archaeological Science, 2009, 36(12): 2609-2616
doi: 10.1016/j.jas.2009.09.026 URL |
[106] |
Li XQ, Sun N, Dodson J, et al. The impact of early smelting on the environment of Huoshiliang in Hexi Corridor, NW China, as recorded by fossil charcoal and chemical elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1-4), 329-336
doi: 10.1016/j.palaeo.2011.03.015 URL |
[107] |
Ruddiman WF. The anthropogenic greenhouse era began thousands of years ago[J]. Climatic Change, 2003, 61(3): 261-293
doi: 10.1023/B:CLIM.0000004577.17928.fa URL |
[108] | Ruddiman WF. The Anthropocene[J]. Annual Review of Earth and Planetary Sciences, 2013(41): 45-68 |
[109] |
Ruddiman WF, Ellis EC, Kaplan JO, et al. Defining the epoch we live in[J]. Science, 2015, 348(6230): 38-39
doi: 10.1126/science.aaa7297 pmid: 25838365 |
[110] | Zalasiewicz J, Waters CN, Ellis EC, et al. The Anthropocene: Comparing its meaning in geology (chronostratigraphy) with conceptual approaches arising in other disciplines[J]. Earth’s Future, 2021(9): e2020EF001896 |
[111] | Yu YY, Guo ZT, Wu HB, et al. Reconstructing prehistoric land use change from archeological data: Validation and application of a new model in Yiluo valley, northern China[J]. Agriculture, Ecosystems and Environment, 2012(156): 99-107 |
[112] |
Guo ZT, Zhou X, Wu HB. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes[J]. Climate Dynamics, 2012, 39(5): 1073-1092
doi: 10.1007/s00382-011-1147-5 URL |
[113] |
Fuller DQ, Van Etten J, Manning K, et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: An archaeological assessment[J]. The Holocene, 2011, 21(5): 743-759
doi: 10.1177/0959683611398052 URL |
[1] | 仪明洁, 余官玥, 陈福友, 张晓凌. 泥河湾盆地白洗沟遗址出土的石制品[J]. 人类学学报, 2023, 42(05): 590-603. |
[2] | 赵宇超, 李锋, 周静, 陈福友, 高星. 甘肃杨上旧石器遗址剥片技术与策略[J]. 人类学学报, 2023, 42(05): 604-615. |
[3] | 赵清坡, 张水木, 宿凯, 马欢欢, 陈君, 徐永华. 河南汝州温泉遗址的发现与初步研究[J]. 人类学学报, 2023, 42(05): 616-625. |
[4] | 徐廷, 赵海龙, 顾聆博. 吉林省和龙大洞旧石器遗址2010年发掘报告[J]. 人类学学报, 2023, 42(05): 651-666. |
[5] | 洪小茹, 陈苇, 余官玥, 李佳俪, 杨宇春, 吕红亮, 向芳, 陈惠莘. 成都平原南部新发现的旧石器[J]. 人类学学报, 2023, 42(05): 667-678. |
[6] | 战世佳, 董哲, 钱耀鹏. 泾河中、下游2020年旧石器考古调查简报[J]. 人类学学报, 2023, 42(05): 679-686. |
[7] | 李锋, 姜莉君. 关于旧石器时代遗址发掘报告撰写的思考[J]. 人类学学报, 2023, 42(05): 701-708. |
[8] | 周亚威, 于雅婷, 顾万发. 河南双槐树新石器时代遗址儿童的古病理学[J]. 人类学学报, 2023, 42(04): 458-471. |
[9] | 仝广, 李锋, 高星. 楔形细石核压制剥片技术的实验研究[J]. 人类学学报, 2023, 42(03): 305-316. |
[10] | 叶灿阳, 陈胜前, 赵潮, 胡晓农, 郭明建, 包青川. 冀蒙交界裕民文化锛状器的制作技术[J]. 人类学学报, 2023, 42(03): 317-330. |
[11] | 杜雨薇, 张乐, 叶芷, 裴树文. 蔚县盆地吉家庄旧石器遗址动物骨骼的埋藏学分析[J]. 人类学学报, 2023, 42(03): 359-372. |
[12] | 顾纯光, 罗武宏, 张东, 杨玉璋. 安徽禹会村遗址双墩文化时期农业发展的植硅体证据[J]. 人类学学报, 2023, 42(01): 110-121. |
[13] | 贺乐天, 王永强, 魏文斌. 新疆哈密拉甫却克墓地人的颅面部测量学特征[J]. 人类学学报, 2022, 41(06): 1017-1027. |
[14] | 刘鑫, 张兴华, 宇克莉, 刘艳霞, 包金萍, 郑连斌. 生物电阻抗法测定广西京族的体成分[J]. 人类学学报, 2022, 41(06): 1028-1036. |
[15] | 沙仁高娃, 程慧珍, 韦兰海. 达斡尔语分支早期在蒙古语族中的地位[J]. 人类学学报, 2022, 41(06): 1037-1046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||