Phylogenetic reconstruction of Gigantopithecus blacki using palaeoproteomic analysis

  • Wei WANG
Expand
  • Institute of Cultural Heritage, Shandong University, Qingdao 266237

Received date: 2020-07-30

  Revised date: 2020-09-27

  Online published: 2020-10-30

Abstract

Gigantopithecus blacki is the largest hominoid that ever lived in southern China during Pleistocene epoch. Based on its highly specialized dentognathic anatomy, especially extremely large dentition and mandible size, this giant species is estimated to have a body mass of at least 200 kg. So far, chronological and biostratigraphic evidences indicate that G. blacki occupation ranged from 2 MaBP to 0.3 MaBP. The origins and evolution of this animal are controversial for long time, due to the absence of geological fossil record in late Miocene to Pliocene. In Nature (2019) we reported a proteome study on tooth enamel of G. blacki in Chuifeng cave of early Pleistocene (1.9 MaBP) in Bubing Basin, southern China[1]. We identified no endogenous proteins from the dentine, but instead recovered an ancient enamel proteome composed of 409 unique peptides matching 6 endogenous proteins. We demonstrate that G. blacki is a sister clade to orangutans (genus Pongo) with a common ancestor about 12~10 MaBP. This is the first time that molecular evidence is retrieved from such ancient fossil in the subtropical region, further suggesting that the study of ancient proteins will provide strong support for the exploration of the origin and evolution of extinct species, including hominins. In addition, this paper will also briefly review the history of phylogenetic and divergence discussion of Gigantopithecus and introduce the proceeding of the ancient proteins study.

Cite this article

Wei WANG . Phylogenetic reconstruction of Gigantopithecus blacki using palaeoproteomic analysis[J]. Acta Anthropologica Sinica, 2020 , 39(04) : 717 -726 . DOI: 10.16359/j.cnki.cn11-1963/q.2020.0047

References

[1] Welker F, Ramos-Madrigal J, Kuhlwilm M, et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine[J]. Nature, 2019,576:262-265
[2] Zhang Y, Harrison T. Gigantopithecus blacki: a giant ape from the Pleistocene of Asia revisited[J]. American Journal of Physical Anthropology, 2017,162:153-177
[3] 邓成龙, 郝青振, 郭正堂, 等. 中国第四纪综合地层和时间框架[J]. 中国科学:地球科学, 2018,49(1):330-52
[4] Ciochon R, Long VT, Larick R, et al. Dated co-occurrence of Homo erectus and Gigantopithecus from Tham Khuyen cave, Vietnam[J]. Proceedings of the National Academy of Sciences, 1996,93(7):3016-3020
[5] Von Koenigswald G. Eine fossile S?ugetierfauna mit Simia aus Südchina[J]. Proceedings of the Koniklijke Nederlandse Akademie van Wetenschappen Series B, 1935,38:872-879
[6] Weidenreich F. Giant early man from Java and South China[M]. Anthropological Papers of the American Museum of Natural History, 1945,40:1-134
[7] Dahlberg AA. Gigantopithecus blacki von Koenigswald, a giant fossil hominoid from the Pleistocene of southern China[J]. Anthropological Papers of the American Museum of Natural History, 1952,43:292-325.
[8] Pei W. Giant ape's jaw bone discovered in China[J]. American Anthropologist, 1957,59(5):834-838
[9] Pei W. Discovery of Gigantopithecus mandibles and other material in Liu-Cheng district of Central Kwangsi in South China[J]. Vert Palasiatica, 1957,1(2):65-71
[10] 吴汝康. 巨猿下颌骨和牙齿化石[M]. 科学出版社, 1962, 1-94
[11] Simons E, Pilbeam D. Preliminary revision of the Dryopithecinae (Pongidae, Anthropoidea)[J]. Folia Primatol, l965, 3:8l-l52
[12] Pilbeam D. Gigantopithecus and the origins of Hominidae[J]. Nature, 1970,225:516-519
[13] Simons E, Ettel PC. Gigantopithecus[J]. Scientific American, 1970,222(1):76-87
[14] Frayer DW. Gigantopithecus and its relationship to Australopithecus[J]. American Journal of Physical Anthropology, 1973,39(3):413-426
[15] Robinson J, Steudel K. Multivariate discriminant analysis of dental data bearing on early hominid affinities[J]. Journal of Human Evolution, 1973,2(6):509-527
[16] Eckhardt RB. Gigantopithecus as a hominid ancestor[J]. Anthropologischer Anzeiger, 1973,34:1-8
[17] Eckhardt RB. Gigantopithecus as a hominid[C]. In R. L. Tuttle (Ed.), Paleoanthropology, morphology and palaeoecology. Mouton: The Hague, 1975: 105-127
[18] Gelvin BR. Morphometric affinities of Gigantopithecus[J]. American Journal of Physical Anthropology, 1980,53(4):541-68
[19] Simons EL. Gigantopithecus (Pongidae, Hominoidea). A new species from north India[J]. Postilla, 1969,138:1-18
[20] Patnaik R. Indian Neogene Siwalik mammalian biostratigraphy: An overview[A]. In: X. Wang, L. J. Flynn, M. Fortelius (Eds.), Fossil mammals of Asia: Neogene biostratigraphy and chronology[C]. New York: Columbia University Press, 2013: 423-444
[21] Pillans B, Williams M, Cameron D, et al. Revised correlation of the Haritalyangar magnetostratigraphy, Indian Siwaliks: implications for the age of the Miocene hominids Indopithecus and Sivapithecus, with a note on a new hominid tooth[J]. Journal of Human Evolution, 2005,48(5):507-15
[22] Pilgrim GE. New Siwalik primates and their bearing on the question of the evolution of man and the Anthropoidea[J]. Records of the Geological Survey of India, 1915,45:1-74
[23] Von Koenigswald G. Bemerkungen zu Dryopithecus giganteus Pilgrim[J]. Eclogae Geologicae Helvetiae, 1950,42:515-519
[24] Von Koenigswald G. Remarks on Indopithecus: A reply[J]. American Journal of Physical Anthropology, 1951,9(4):461-464
[25] Hooijer D. Questions relating to a new large anthropoid ape from the Mio-Pliocene of the Siwaliks[J]. American Journal of Physical Anthropology, 1951,9(1):79-96
[26] Simons EL, Pilbeam DR. Preliminary Revision of The Dryopithecinae (Pongidae, Anthropoidea)[J]. Folia primatologica, 1965,3(2-3):81-98
[27] Andrews P. Hominoid evolution[J]. Nature, 1982,295(5846):185-186
[28] Andrews P, Cronin J. The relationships of Sivapithecus and Ramapithecus and the evolution of the orang-utan[J]. Nature, 1982,297:541-546
[29] Pilbeam D. New hominoid skull material from the Miocene of Pakistan[J]. Nature, 1982,295(5846):232-234
[30] Cameron D. A functional and phylogenetic interpretation of the late Miocene Siwalik hominid Indopithecus and the Chinese Pleistocene hominid Gigantopithecus[J]. Himalayan Geology, 2003,24:19-28
[31] Begun DR. How to identify (as opposed to define) a homoplasy: Examples from fossil and living great apes[J]. Journal of Human Evolution, 2007,52(5):559-572
[32] Begun DR. Miocene hominids and the origins of the African apes and humans[J]. Annual Review of Anthropology, 2010,39:67-84
[33] Fleagle JG. Primate adaptation and evolution[M]. San Diego: Academic Press, 2013
[34] Harrison T. Apes among the tangled branches of human origins[J]. Science, 2010,327:532-534
[35] Kelley J. The hominoid radiation in Asia[C]. In W. C. Hartwig (Ed.), The primate fossil record. Cambridge: Cambridge University Press, 2013: 369-384
[36] Miller SF, White JL, Ciochon RL. Assessing mandibular shape variation within Gigantopithecus using a geometric morphometric approach[J]. American Journal of Physical Anthropology, 2008,137(2):201-212
[37] Hendy J. Ancient metaproteomics: a novel approach for understanding disease and diet in the archaeological record[D]. University of York, 2015, 1-463
[38] Bada JL, Miller SL. Ammonium ion concentration in the primitive ocean[J]. Science, 1968,159:423-425
[39] Terwilliger TC, Clarke S. Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells[J]. Journal of Biological Chemistry, 1981,256(6):3067-3076
[40] Daniel RM, Dines M, Petach HH. The denaturation and degradation of stable enzymes at high temperatures[J]. Biochemical Journal, 1996,317(1):1-11
[41] Van Doorn NL, Wilson J, Hollund H, et al. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration[J]. Rapid Communications in Mass Spectrometry, 2012,26(19):2319-2327
[42] Solazzo C, Wilson J, Dyer JM, et al. Modeling deamidation in sheep α-keratin peptides and application to archeological wool textiles[J]. Analytical chemistry, 2014,86(1):567-575
[43] Abelson PH. Amino acids in fossils[J]. Science, 1954,119:576
[44] Herman A, Addadi L, Weiner S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals—a study of intracrystalline proteins[J]. Nature, 1988,331:546-548
[45] Walton D. Degradation of intracrystalline proteins and amino acids in fossil brachiopods[J]. Organic Geochemistry, 1998,28(6):389-410
[46] Walton D. Problems For Taxonomic Analysis Using Intracrystalline Animo Acids: An Example Using Brachiopods[J]. Palaeontology, 1998,41(4):753-770
[47] Robbins L, Muyzer G, Brew K. Macromolecules from Living and Fossil Biominerals[A]. Organic Geochemistry[M]. Springer US, 1993: 799-816
[48] Lowenstein JM, Sarich VM, Richardson B J. Albumin systematics of the extinct mammoth and Tasmanian wolf[J]. Nature, 1981,291:409-411
[49] Ostrom PH, Schall M, Gandhi H, et al. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2000,64(6):1043-1050
[50] Cappellini E, Collins MJ, Gilbert MTP. Unlocking ancient protein palimpsests[J]. Science, 2014,343:1320-1322
[51] Phizicky E, Bastiaens PI, Zhu H, et al. Protein analysis on a proteomic scale[J]. Nature, 2003,422:208-215
[52] Tyers M, Mann M. From genomics to proteomics[J]. Nature, 2003,422:193-197
[53] Bensimon A, Heck AJ, Aebersold R. Mass spectrometry-based proteomics and network biology[J]. Annual Review of Biochemistry, 2012,81:379-405
[54] Steen H, Mann M. The ABC's (and XYZ's) of peptide sequencing[J]. Nature reviews Molecular cell biology, 2004,5(9):699-711
[55] Dobberstein RC, Collins MJ, Craig OE, et al. Archaeological collagen: Why worry about collagen diagenesis?[J]. Archaeological and Anthropological Sciences, 2009,1(1):31-42
[56] Service RF. Protein power[J]. Science, 2015,349:372-373
[57] Brown S, Higham T, Slon V, et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis[J]. Scientific reports, 2016,6:23559
[58] Welker F, Hajdinjak M, Talamo S, et al. Palaeoproteomic evidence identifies archaic hominins associated with the Chatelperronian at the Grotte du Renne[J]. Proceedings of the National Academy of Sciences, 2016,113(40):11162-11167
[59] Buckley M, Collins M, Thomas-Oates J, et al. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009,23(23):3843-3854
[60] Richter KK, Wilson J, Jones A K, et al. Fish’n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments[J]. Journal of Archaeological Science, 2011,38(7):1502-1510
[61] Welker F, Collins MJ, Thomas JA, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates[J]. Nature, 2015,522(7554):81-84
[62] Cappellini E, Welker F, Pandolfi L, et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny[J]. Nature, 2019,574(7776):103-107
[63] Corthals A, Koller A, Martin DW, et al. Detecting the immune system response of a 500 year-old Inca mummy[J]. PLoS ONE, 2012,7(7):e41244
[64] Maixner F, Overath T, Linke D, et al. Paleoproteomic study of the Iceman’s brain tissue[J]. Cellular and Molecular Life Sciences, 2013,70(19):3709-3722
[65] Kempson IM, Skinner W, Kirkbride P, et al. Time-of-flight secondary ion mass spectrometry analysis of hair from archaeological remains[J]. European Journal of Mass Spectrometry, 2003,9(6):589-597
[66] Buckley M, Kansa SW. Collagen fingerprinting of archaeological bone and teeth remains from Domuztepe, South Eastern Turkey[J]. Archaeological and Anthropological Sciences, 2011,3(3):271-280
[67] Warinner C, Hendy J, Speller C, et al. Direct evidence of milk consumption from ancient human dental calculus[J]. Scientific Reports, 2014,4(1):1-6
[68] Stewart NA, Molina GF, Issa JPM, et al. The identification of peptides by nanoLC-MS/MS from human surface tooth enamel following a simple acid etch extraction[J]. RSC Advances, 2016,6(66):61673-61679
[69] Chen F, Welker F, Shen CC, et al. A late middle Pleistocene denisovan mandible from the Tibetan plateau[J]. Nature, 2019,569(7756):409-412
[70] Buckley M, Melton ND, Montgomery J. Proteomics analysis of ancient food vessel stitching reveals> 4000-year-old milk protein[J]. Rapid Communications in Mass Spectrometry, 2013,27(4):531-538
[71] Solazzo C, Fitzhugh WW, Rolando C, et al. Identification of Protein Remains in Archaeological Potsherds by Proteomics[J]. Analytical Chemistry, 2008,80(12):4590-4597
[72] Hendy J, Colonese AC, Franz I, et al. Ancient proteins from ceramic vessels at ?atalh?yük West reveal the hidden cuisine of early farmers[J]. Nature Communications, 2018,9(1):1-10
[73] Solazzo C, Dyer JM, Clerens S, et al. Proteomic evaluation of the biodegradation of wool fabrics in experimental burials[J]. International Biodeterioration & Biodegradation, 2013,80:48-59
[74] von Holstein IC, Ashby SP, Van Doorn NL, et al. Searching for Scandinavians in pre-Viking Scotland: molecular fingerprinting of Early Medieval combs[J]. Journal of Archaeological Science, 2014,41:1-6
[75] Stewart JR, Allen RB, Jones AK, et al. Walking on Eggshells: A Study of Egg Use in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS[J]. International Journal of Osteoarchaeology, 2014,24(3):247-255
[76] Oonk S, Cappellini E, Collins MJ. Soil proteomics: An assessment of its potential for archaeological site interpretation[J]. Organic Geochemistry, 2012,50:57-67
[77] Hong C, Jiang H, Lü E, et al. Identification of milk component in ancient food residue by proteomics[J]. PLoS ONE, 2012,7(5):e37053
[78] Yang Y, Shevchenko A, Knaust A, et al. Proteomics evidence for kefir dairy in Early Bronze Age China[J]. Journal of Archaeological Science, 2014,45:178-186
[79] Bianucci R, Mattutino G, Lallo R, et al. Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period[J]. Journal of Archaeological Science, 2008,35(7):1880-1885
[80] Bianucci R, Rahalison L, Peluso A, et al. Plague immunodetection in remains of religious exhumed from burial sites in central France[J]. Journal of Archaeological Science, 2009,36(3):616-621
[81] Miller RL, Armelagos G, Ikram S, et al. Palaeoepidemiology of Schistosoma infection in mummies[J]. British Medical Journal, 1992,304:555-556
[82] Kolman CJ, Centurion-Lara A, Lukehart SA, et al. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen[J]. Journal of Infectious Diseases, 1999,180(6):2060-2063
[83] Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions[J]. Nature Genetics, 2013,45(4):450-455
[84] Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity[J]. Nature Genetics, 2014,46(4):336-344
[85] Warinner C, Speller C, Collins MJ. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015,370:20130376
[86] Sun L, Deng C, Wang W, et al. Magnetostratigraphy of Plio-Pleistocene fossiliferous cave sediments in the Bubing Basin, southern China[J]. Quaternary Geochronology, 2017,37:68-81
[87] Wang W, Richard P, Yuan BY, et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China[J]. Journal of Human Evolution, 2007,52(4):370-379
[88] Wang W, Liao W, Li D, et al. Early Pleistocene large-mammal fauna associated with Gigantopithecus at Mohui Cave, Bubing Basin, South China[J]. Quaternary International, 2014,354:122-130
[89] Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips[J]. Nature Protocols, 2007,2(8):1896-1906
[90] Mackie M, Rüther P, Samodova D, et al. Palaeoproteomic profiling of conservation layers on a 14th century Italian wall painting[J]. Angewandte Chemie International Edition, 2018,57(25):7369-7374
[91] Besenbacher S, Hvilsom C, Marques-Bonet T, et al. Direct estimation of mutations in great apes reconciles phylogenetic dating[J]. Nature Ecology & Evolution, 2019,3(2):286-292
[92] Langergraber KE, Prüfer K, Rowney C, et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution[J]. Proceedings of the National Academy of Sciences, 2012,109(39):15716-15721
Outlines

/