Research Articles

Human adaptive behaviors during the Middle Pleistocene Climatic Transition in the Nihewan Basin

  • Shuwen PEI ,
  • Zhe XU ,
  • Zhi YE ,
  • Dongdong MA ,
  • Zhenxiu JIA
Expand
  • 1. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044
    2. University of Chinese Academy of Sciences, Beijing 100049
    3. Instituto de Historia, CSIC. Albasanz 26-28. 28037 Madrid, Spain
    4. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101

Received date: 2023-06-28

  Online published: 2024-02-06

Abstract

The relationship between hominin evolution, technological developments, and environmental change has always been at the frontier of academic attention. The mid-Pleistocene Climate Transition (MPT) where the cycle, frequency and amplitude of climate change alters, occurred between 1.25 and 0.7 MaBP. This critical period promoted an initial migration wave of Homo erectus (Out of Africa I) and accelerated the spread of Homo erectus(equipped with Acheulean technology) to Eurasia from Africa. According to recent studies, the spread of Homo erectus taking Oldowan toolkits to middle/high latitudes of East Asia can be traced back to 2.12 MaBP. Around 1.66 MaBP, humans occupied the Nihewan Basin, leaving behind abundant and dense Paleolithic archaeological sites showing clear diverse and flexible adaptive behavioral characteristics. This paper presents a preliminary study between environmental change and human survival behaviors of several important sites (Feiliang, Madigou, Cenjiawan, and Dongutuo, etc.) during the MPT from the Cenjiawan platform in the eastern part of the Nihewan Basin.

Raw material procurement and exploration strategies indicate that local materials were adopted by early humans in the Cenjiawan platform. Exploration of different raw materials from sites depended on the distance from the raw material source instead of being directly influenced by environmental fluctuations. Freehand direct hard hammer percussion was the dominant technique especially during the MPT period. Although bipolar knapping was adopted by early humans, it had a complementary role that showed flexibility in knapping skills and enhancement of cognitive abilities of early humans to overcome constraints imposed by different qualities of raw materials. Attribute analysis of cores and flakes showed that core reduction and flaking procedures improved during the MPT period. The high quality of chert was selected as the most favorable raw material for stone knapping in the Nihewan Basin. Not only the number of tool types increased and the degree of retouch methods diversified, but complexity of various types of small scrapers, points, bores, notches, denticulates and multi-edged small tools increased significantly over time. In addition, evidence of core rotation and bifacial working of small clasts across some of the Nihewan assemblages like the Madigou knappers indicate that hominins had the ability to fashion bifacial implements and potentially LCTs. It can be deduced that increased environmental fluctuation and paleoecological variability during the MPT may have contributed to technological flexibility and diversification in response to new climatic challenges.

This paper provides new insights into the understanding of human behavioral adaptation that corresponded with environmental fluctuations from African to high-latitude arid-semi-arid regions in East Asia.

Cite this article

Shuwen PEI , Zhe XU , Zhi YE , Dongdong MA , Zhenxiu JIA . Human adaptive behaviors during the Middle Pleistocene Climatic Transition in the Nihewan Basin[J]. Acta Anthropologica Sinica, 2024 , 43(01) : 19 -39 . DOI: 10.16359/j.1000-3193/AAS.2023.0076

References

[1] deMenocal PB. Climate and human evolution[J]. Science, 2011, 331: 540-542
[2] Zeller E, Timmermann A, Yun KS, et al. Human adaptation to diverse biomes over the past 3 million years[J]. Science, 2023, 380: 604-608
[3] Potts R. Hominin evolution in settings of strong environmental variability[J]. Quaternary Science Reviews, 2013, 79: 1-13
[4] Grove M. Amplitudes of orbitally induced climatic cycles and patterns of hominin speciation[J]. Journal of Archaeological Science, 2012, 39: 3085-3094
[5] Magilla CR, Ashley GM, Freemana KH. Ecosystem variability and early human habitats in eastern Africa[J]. PNAS, 2013, 110(4): 1167-1174
[6] Bar-Yosef O, Belfer-Cohen A. From Africa to Eurasia-Early dispersals[J]. Quaternary International, 2001, 75:19-28
[7] Potts R. Evolution and environmental change in early human prehistory[J]. Annual Review of Anthropology, 2012, 41(1): 151-167
[8] Anton SC, Swisher CC. Early dispersals of Homo from Africa[J]. Annual Review of Anthropology, 2004, 33: 271- 296
[9] Clark PU, Archer D, Pollard D, et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 2006, 25: 3150-3184
[10] Mudelsee M, Schulz M. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka[J]. Earth and Planetary Science Letters, 1997, 151(1): 117-123
[11] 王婷, 孙有斌, 刘星星. 中更新世气候转型:特征、机制和展望[J]. 科学通报, 2017, 33:71-82
[12] Ruddiman WF, Raymo M, Mcintyre A. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets[J]. Earth and Planetary Science Letters, 1986, 80: 117-129
[13] Sun YB. Yin QZ, Crucifix M, et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications, 2019, 10: 352
[14] Ruddiman WF. Orbital changes and climate[J]. Quaternary Science Reviews, 2006, 25(23-24): 3092-3112
[15] Schmieder F, Dobeneck TV, Bleil U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event[J]. Earth and Planetary Science Letters, 2000, 179(3):539-549
[16] Tripati AK, Roberts CD, Eagle RA. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326(5958):1394-1397
[17] 汪品先, 田军, 成鑫荣. 第四纪冰期旋回转型在南沙深海的记录[J]. 中国科学(D辑:地球科学), 2001, 10: 793-799
[18] Deng CL, Shaw J, Liu QS, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling[J]. Earth and Planetary Science Letters, 2006, 241(1-2): 248-259
[19] Ao H, Dekkers MJ, Xiao G, et al. Different orbital rhythms in the Asian summer monsoon records from North and South China during the Pleistocene[J]. Global and Planetary Change, 2012, (80-81): 51-60
[20] Ding ZL, Derbyshire E, Yang SL, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2): 45-55
[21] An ZS, Huang YS, Liu WG, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J]. Geology, 2005, 33(9): 705-708
[22] An ZS, Kutzbach JE, Prell WL, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411: 62-66
[23] Abbate E, Sagri M. Early to Middle Pleistocene Homo dispersals from Africa to Eurasia: Geological, climatic and environmental constraints[J]. Quaternary International, 2012, 267: 3-19
[24] Deng CL, Xie F, Liu C, et al. Magnetochronology of the Feiliang Paleolithic site in the Nihewan Basin and implications for early human adaptability to high northern latitudes in East Asia[J]. Geophysical Research Letters, 2007, 34. https://doi.org/10.1029/2007GL030335
[25] Larick RR, Ciochon RL. The African emergence and early asian dispersals of the Genus Homo[J]. American Scientist, 1996, 84(6): 538-551
[26] 吴文祥, 刘东生. 气候转型与早期古人类迁徙[J]. 海洋地质与第四纪地质, 2001, 21(4):103-109
[27] Zhu ZY, Dennell RW, Huang WW, et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago[J]. Nature, 2018, 559 (7715): 608-612
[28] Zhu RX, Potts R, Xie F, et al. New evidence on the earliest human presence at high northern latitudes in northeast Asia[J]. Nature, 2004, 431: 559-562
[29] Potts R, Teague R. 2010. Behavioral and environmental background to ‘Out-of-Africa I’ and the arrival of Homo erectus in East Asia[A]. In: Fleagle JG, et al. (Eds). Out of Africa I: The First Hominin Colonization of Eurasia[M]. Springer, Dordrecht, 2010, 67-85
[30] 朱日祥, 邓成龙, 潘永信. 泥河湾盆地磁性地层定年与早期人类演化[J]. 第四纪研究, 2007, 27(6): 922-944
[31] 卫奇. 泥河湾盆地考证[J]. 文物春秋, 2016, 2: 3-11
[32] 周廷儒, 李华章, 李容全, 等. 泥河湾盆地新生代古地理研究[M]. 北京: 科学出版社, 1991, 1-162
[33] 袁宝印, 夏正楷, 牛平山. 泥河湾裂谷与古人类[M]. 北京: 地质出版社, 2011, 1-257
[34] Barbour GB, Licent E, Teilhard de Chardin P. Geological study of the deposits of the Sangkanho basin[J]. Bulletin of Geological Society of China. 1927, 5: 263-278
[35] Teilhard de Chardin P, Piveteau J. Les mammiferes fossils de Nihowan (Chine)[M]. Annales de Paleontologie, 1930, 19: 1-54
[36] 谢飞, 李君. 马圈沟遗址石制品的特征[J]. 文物春秋, 2002 (3): 1-6
[37] 尤玉柱, 汤英俊, 李毅. 泥河湾组旧石器的发现[J]. 中国第四纪研究, 1980, 1: 1-11
[38] 卫奇, 孟浩, 成胜泉. 泥河湾层中新发现一处旧石器地点[J]. 人类学学报, 1985, 4(3): 223-232
[39] Zhu RX, Hoffman K, Potts R, et al. Earliest presence of humans in northeast Asia[J]. Nature, 2001, 413: 413-417
[40] Pei SW, Deng CL, de la Torre I, et al. Magnetostratigraphic and archaeological records at the Early Pleistocene site complex of Madigou (Nihewan Basin): Implications for human adaptations in North China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2019, 530: 176-189
[41] Wang HQ, Deng CL, Zhu RX, et al. Magnetostratigraphic dating of the Donggutuo and Maliang paleolithic sites in the Nihewan Basin, North China[J]. Quaternary Research, 2005, 64(1): 1-11
[42] Wang HQ, Deng CL, Zhu RX, et al. Paleomagnetic dating of the Cenjiawan Paleolithic site in the Nihewan Basin, northern China[J]. Science in China Series D, 2006, 49: 295-303
[43] Zuo TW, Cheng HJ, Liu P, et al. Magnetostratigraphic dating of the Hougou Paleolithic site in the Nihewan Basin[J]. North China. Science China (Earth Science), 2011, 54: 1643-1650
[44] An ZS, Kukla GJ, Porter SC, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years[J]. Quaternary Research, 1991, 36: 29-36
[45] Wu F, Fang X, Ma Y, et al. Plio-Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2007, 257(1-2): 160-169
[46] Li YC, Zhang Z, Ding GQ, et al. Late Pliocene and early Pleistocene vegetation and climate change revealed by a pollen record from Nihewan Basin, North China[J]. Quaternary Science Reviews, 2019, 222:105905
[47] 周昆叔, 梁秀龙, 严富华, 等. 从泥河湾层花粉分析谈南沟冷期等问题[J]. 地质科学, 1983, 18(1): 82-92
[48] 袁宝印, 朱日祥, 田文来, 等. 泥河湾组的时代地层划分和对比问题[J]. 中国科学(D 辑), 1996, 26(1): 67-73
[49] Wang Y, Dong J, Amundson R. Carbon isotope evidence for environmental change in Nihewan Basin, China[J]. Chinese Science Bulletin, 1998, 43: 138-138
[50] 董军社, 王杨, Amundson R, 等. 泥河湾更新世哺乳动物牙釉质碳同位素组成与环境变迁[A].见:王元青,邓涛.第七届中国古脊椎动物学学术年会论文集[C]. 北京: 海洋出版社, 1999, 211-218
[51] 邓涛, 董军社, 王杨. 化石稳定碳同位素记录的中国华北第四纪陆地生态系统演变[J]. 科学通报, 2001, 46(14): 1213-1215
[52] Zhou XY, Yang JL, Wang SQ, et al. Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene transition in temperate northern East Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 287-294
[53] Yang SL, Ding F, Ding ZL. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan[J]. Geochimica et Cosmochimica Acta, 2006, 70: 1695-1709
[54] Lisiecki RE, Raymo ME. A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography and Paleoclimatology, 2005, 20(1):1-17
[55] Qiu ZX. Quaternary environmental changes and evolution of large mammals in North China[J]. Vertebrata PalAsiatica, 2006, 44(2): 109-132
[56] 李潇丽. 泥河湾盆地吉家庄遗址地层易溶盐沉积记录的古气候信息[J]. 海洋地质与第四纪地质, 2000, 40(5): 149-159
[57] Li XL, Pei SW, Jia ZX, et al. Paleoenvironmental conditions at Madigou (MDG), a newly discovered Early Paleolithic site in the Nihewan Basin, North China[J]. Quaternary International, 2016, 400:100-110
[58] Pei SW, Xie F, Deng CL, et al. Early Pleistocene archaeological occurrences at the Feiliang site, and the archaeology of human origins in the Nihewan Basin, North China[J]. Plos One, 2017, 12(11): e0187251
[59] 李月丛, 许清海, 阳小兰. 河北省阳原县飞梁遗址孢粉分析[J]. 地理学与国土研究, 1996, 12(3): 55-58
[60] 李潇丽, 裴树文, 马宁, 等. 泥河湾盆地东谷坨遗址剖面易溶岩沉积及其环境意义[J]. 古地理学报, 2010, 12(3): 307-314
[61] Pei SW, Li XL, Liu DC, et al. Preliminary study on the living environment of hominids at the Donggutuo site, Nihewan Basin[J]. Chinese Science Bulletin, 2009, 54: 3896-3904
[62] 许清海, 王子惠, 阳小兰, 等. 根据孢粉分析推测岑家湾旧石器时代遗址古人类生活时的气候与环境[A].见:河北省文物研究所(编).河北省考古文集[C]. 北京: 东方出版社, 1998: 505-513
[63] Xu Z, Pei SW, Hu YW, et al. Stable isotope analysis of mammalian enamel from the Early Pleistocene site of Madigou, Nihewan Basin: Implications for reconstructing hominin paleoenvironmental adaptations in North China[J]. Frontiers in Earth Science. 2021, 9: 789781
[64] Xu Z, Pei SW, Hu YW, et al. Ecological shifts and hominin adaptations during the Mid-Pleistocene Climate Transition in Northeast Asia as evidenced by isotopic analysis (δ13C, δ18O) of mammalian enamel from Early Paleolithic sites in the Nihewan Basin, China[J]. Quaternary Science Reviews, 2023, 308: 108072
[65] 徐哲, 马姣, 裴树文. 哺乳动物牙釉质碳氧稳定同位素揭示古人类演化与环境关系[J]. 人类学学报, 2021, 40(3): 454-468
[66] 谢飞, 李珺. 马圈沟遗址石制品的特征[J]. 文物春秋, 2002, (3): 1-6+19
[67] 陈淳, 沈辰, 陈万勇, 等. 河北阳原小长梁遗址 1998 年发掘报告[J]. 人类学学报, 1999, 18(3): 225-239
[68] Yang SX, Hou YM, Yue JP, et al. The lithic assemblages of Xiaochangliang, Nihewan Basin: implications for Early Pleistocene hominin behaviour in North China[J]. Plos One, 2016, 11(5): e0155793
[69] 谢飞, 李珺, 成胜泉. 飞梁遗址发掘报告[A].见:河北省文物研究所.河北省考古文集[C]. 北京: 东方出版社, 1998,1-29
[70] 贾真秀. 泥河湾盆地早更新世古人类遗址成因与石器技术比较研究-以东谷坨、麻地沟和飞梁遗址为例[D]. 中国科学院大学,博士学位论文, 2018
[71] 裴树文, 马宁, 李潇丽. 泥河湾盆地东端 2007 年新发现的旧石器地点[J]. 人类学学报, 2010, 29(1): 33-43
[72] 谢飞, 成胜泉. 河北阳原岑家湾发现的旧石器[J]. 人类学学报, 1990, 9(3): 265-272+286
[73] 马东东. 泥河湾盆地麻地沟遗址石器实验研究[D]. 北京: 中国科学院大学, 2018
[74] Yang SX, Wang FG, Xie F, et al. Technological innovations at the onset of the Mid-Pleistocene Climate Transition in high-latitude East Asia[J]. National Science Review, 2021, 8: nwaa053. https://doi.org/10.1093/nsr/nwaa053
[75] 卫奇. 东谷坨旧石器初步观察[J]. 人类学学报, 1985, 4(4): 289-300+401-402
[76] Yang SX, Petraglia MD, Hou YM, et al. The lithic assemblages of Donggutuo, Nihewan basin: Knapping skills of Early Pleistocene hominins in North China[J]. PloS One, 2017, 12(e): 0189565
[77] 卫奇, 李珺, 裴树文. 旧石器遗址与古人类活动信息[A].见:袁宝印,夏正楷,牛平山.泥河湾裂谷与古人类[M]. 北京: 地质出版社, 2011, 132-207
[78] 刘连强, 王法岗, 杨石霞, 等. 泥河湾盆地马梁遗址第10地点2016年出土石制品研究[J]. 人类学学报, 2018, 37(3): 419-427
[79] 裴树文, 侯亚梅. 东谷坨遗址石制品原料利用浅析[J]. 人类学学报, 2021, 20(4): 271-281
[80] Toth N. The Oldowan reassessed: A close look at early stone artifacts[J]. Journal of Archaeological Science, 1985, 12: 101-120
[81] 徐哲. 泥河湾盆地中更新世气候转型初期人类适应的环境因素:哺乳动物牙釉质稳定同位素分析[D]. 中国科学院大学, 2023
[82] Toth N. The stone technologies of early hominids at Koobi Fora, Kenya: An experimental approach[D]. Ph.D. Thesis. University of California, Berkeley. 1982
[83] Li H, Li YY, Yu L, et al. Continuous technological and behavioral development of late Pleistocene hominins in central South China: Multidisciplinary analysis at Sandinggai[J]. Quaternary Science Reviews, 2022, 298: 107850
[84] Ma DD, Pei SW, de la Torre I, et al. Technological adaptations of early humans at the Lower Pleistocene Nihewan Basin, North China: The case of the bipolar technique[J]. Archaeological and Anthropological Sciences, 2020, 12: 278
[85] 侯亚梅. “东谷坨石核”类型的命名与初步研究[J]. 人类学学报, 2003, 22(4): 279-292
[86] Yang SX, Deng CL, Zhu RX, et al. The Paleolithic in the Nihewan Basin, China: Evolutionary history of an Early to Late Pleistocene record in Eastern Asia[J]. Evolutionary Anthropology, 2020, 29(3): 125-142
[87] Binford LR. Nunamiut Ethnoarchaeology[M]. New York: Academic Press, 1978
[88] Re?ek ?, Dibble HL, McPherron SP, et al. Two million years of flaking stone and the evolutionary efficiency of stone tool technology[J]. Nature ecology & evolution, 2018, 2 (4): 628-633
[89] 刘扬, 侯亚梅. 泥河湾盆地早更新世人类生存环境与技术[J]. 考古, 2017, 5: 95-103
[90] Ao H, Deng CL, Dekkers MJ, et al. Pleistocene environmental evolution in the Nihewan Basin and implication for early human colonization of North China[J]. Quaternary International, 2010, 223-224: 472-478
[91] Ao H, Rohling EJ, Stringer C, et al. Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification[J]. Earth Science Review, 2020, 210: 103354
[92] Dennell RW. The Nihewan Basin of North China in the Early Pleistocene: Continuous and flourishing, or discontinuous, infrequent and ephemeral occupation?[J]. Quaternary International, 2013, 295: 223-236
[93] Toth N, Schick K. The Oldowan: Case Studies in to the Earliest Stone Age[M]. Gosport: Stone Age Institute Press, 2006
[94] Hilgen FJ, Lourens LJ, van Dam JA. The Neogene Period[A]. In: GradsteinFM, OggJG, SchmitzMD. et al. (Eds). The Geologic Time Scale 2012[M]. Elsevier, 2012, 923-978
[95] Singer BS, Hoffman KA, Chauvin A, et al. Dating transitionally magnetized lavas of the late Matuyama Chron: Toward a new 40Ar/39Ar timescale of reversals and events[J]. Journal of Geophysical Research: Solid Earth, 1999, 104 (B1): 679-693
[96] Tian J, Wang PX, Cheng XR, et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison[J]. Earth and Planetary Science Letters, 2002, 203 (3-4): 1015-1029
[97] Head MJ, Pillans B, Farquha SA. The Early-Middle Pleistocene Transition: Characterization and proposed guide for the defining boundary[J]. Episodes, 2008, 31(2): 255-259
[98] Wang FG, Yang SX, Ge JY, et al. Innovative ochre processing and tool use in China 40,000 years ago[J]. Nature, 2022, 603: 284-289
Outlines

/