Acta Anthropologica Sinica ›› 2021, Vol. 40 ›› Issue (03): 513-525.doi: 10.16359/j.1000-3193/AAS.2021.0042
Previous Articles Next Articles
HUANG Chao1,2,3(), ZHANG Shuangquan1,2,3()
Received:
2020-12-18
Revised:
2021-02-18
Online:
2021-06-15
Published:
2021-06-24
Contact:
ZHANG Shuangquan
E-mail:huangchao@ivpp.ac.cn;zhangshuangquan@ivpp.ac.cn
CLC Number:
HUANG Chao, ZHANG Shuangquan. Preliminary application of the X-rays diffraction technique in experimental study of burnt bones[J]. Acta Anthropologica Sinica, 2021, 40(03): 513-525.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2021.0042
骨骼状态 Sample status 加热温度 Temperature | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
300 °C | 0.13 | 0.14 | 0.25 |
350 °C | 0.13 | 0.15 | 0.19 |
400 °C | 0.21 | 0.11 | 0.17 |
450 °C | 0.14 | 0.1 | 0.21 |
500 °C | 0.23 | 0.17 | 0.14 |
550 °C | 0.22 | 0.18 | 0.31 |
600 °C | 0.45 | 0.38 | 0.41 |
650 °C | 1.19 | 0.76 | 0.52 |
700 °C | 1.27 | 1.2 | 0.96 |
750 °C | 1.26 | 1.21 | 0.87 |
800 °C | 1.47 | 1.33 | 1.2 |
Tab.1 The crystallinity index of the samples heated for 120 min
骨骼状态 Sample status 加热温度 Temperature | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
300 °C | 0.13 | 0.14 | 0.25 |
350 °C | 0.13 | 0.15 | 0.19 |
400 °C | 0.21 | 0.11 | 0.17 |
450 °C | 0.14 | 0.1 | 0.21 |
500 °C | 0.23 | 0.17 | 0.14 |
550 °C | 0.22 | 0.18 | 0.31 |
600 °C | 0.45 | 0.38 | 0.41 |
650 °C | 1.19 | 0.76 | 0.52 |
700 °C | 1.27 | 1.2 | 0.96 |
750 °C | 1.26 | 1.21 | 0.87 |
800 °C | 1.47 | 1.33 | 1.2 |
骨骼状态 Sample Status 加热时间 Time | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
30 min | 0.12 | 0.13 | 0.31 |
60 min | 0.14 | 0.14 | 0.21 |
90 min | 0.11 | 0.13 | 0.36 |
120 min | 0.13 | 0.14 | 0.25 |
150 min | 0.14 | 0.14 | 0.19 |
180 min | 0.19 | 0.13 | 0.28 |
210 min | 0.22 | 0.13 | 0.31 |
240 min | 0.15 | 0.13 | 0.24 |
Tab.2 The crystallinity index of the samples heated at 300°C
骨骼状态 Sample Status 加热时间 Time | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
30 min | 0.12 | 0.13 | 0.31 |
60 min | 0.14 | 0.14 | 0.21 |
90 min | 0.11 | 0.13 | 0.36 |
120 min | 0.13 | 0.14 | 0.25 |
150 min | 0.14 | 0.14 | 0.19 |
180 min | 0.19 | 0.13 | 0.28 |
210 min | 0.22 | 0.13 | 0.31 |
240 min | 0.15 | 0.13 | 0.24 |
[1] |
Black D. Evidences of the use of fire by Sinanthropus[J]. Bulletin of the Geological Society of China, 1932,11(2):107-108
doi: 10.1111/j.1755-6724.1932.mp11002002.x URL |
[2] |
Brain CK, Sillen A. Evindence From The Swartkrans Cave For The Earliest Use Of Fire[J]. nature, 1988,336(6198):464-466
doi: 10.1038/336464a0 URL |
[3] |
Shahack-Gross R, Bar-Yosef O, Weiner S. Black-Coloured Bones in Hayonim Cave, Israel: Differentiating Between Burning and Oxide Staining[J]. Journal of Archaeological Science, 1997,24(5):439-446
doi: 10.1006/jasc.1996.0128 URL |
[4] |
Weiner S, Xu Q, Goldberg P, et al. Evidence for the use of fire at Zhoukoudian,China[J]. Science, 1998,281:251-253
doi: 10.1126/science.281.5374.251 URL |
[5] |
Stiner MC, Kuhn SL, Surovell TA, et al. Bone Preservation in Hayonim Cave (Israel): a Macroscopic and Mineralogical Study[J]. Journal of Archaeological Science, 2001,28(6):643-659
doi: 10.1006/jasc.2000.0634 URL |
[6] | Alperson-Afil N, Goren-Inbar N (Eds.). The Acheulian site of Gesher Benot Ya’aqov volume II: Ancient flames and controlled use of fire[M]. Springer Science & Business Media, 2010,10 |
[7] | Berna F, Goldberg P, Horwitz LK, et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(20):E1215-E1220 |
[8] | 高星, 张双权, 张乐, 等. 关于北京猿人用火的证据:研究历史、争议与新进展[J]. 人类学学报, 2016,35(4):481-492 |
[9] |
Gao X, Zhang S, Zhang Y, et al. Evidence of Hominin Use and Maintenance of Fire at Zhoukoudian[J]. Current Anthropology, 2017,58(S16):S267-S277
doi: 10.1086/692501 URL |
[10] |
Stiner MC, Kuhn SL, Weiner S, et al. Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone[J]. Journal of Archaeological Science, 1995,22(2):223-237
doi: 10.1006/jasc.1995.0024 URL |
[11] |
Herrmann B. On histological investigations of cremated human remains[J]. Journal of Human Evolution, 1977,6(2):101-103
doi: 10.1016/S0047-2484(77)80112-7 URL |
[12] | Brain CK. The Occurrence of Burnt Bones at Swartkrans and Their Implications for the Control of Fire by Early Hominids[A].In: Brain CK. Swartkrans: A Cave’s Chronicle of Early man[M]. Pretoria: Transvaal Museum, 1993: 229-242 |
[13] |
Hanson M, Cain CR. Examining histology to identify burned bone[J]. Journal of Archaeological Science, 2007,34(11):1902-1913
doi: 10.1016/j.jas.2007.01.009 URL |
[14] | Shipman P, Foster G, Schoeninger M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage[J]. Journal of Archaeological Science, 1984,4(11):307-325 |
[15] |
Person A, Bocherens H, Saliège J, et al. Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis[J]. Journal of Archaeological Science, 1995,22(2):211-221
doi: 10.1006/jasc.1995.0023 URL |
[16] |
Thompson TJU, Gauthier M, Islam M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone[J]. Journal of Archaeological Science, 2009,36(3):910-914
doi: 10.1016/j.jas.2008.11.013 URL |
[17] |
Thompson TJU, Islam M, Piduru K, et al. An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,299(1-2):168-174
doi: 10.1016/j.palaeo.2010.10.044 URL |
[18] | Schmahl WW, Kocsis B, Toncala A, et al. The Crystalline State of Archaeological Bone Material[A]. In: Grupe G, Grigat A, Mcglynn GC. Across the Alps in Prehistory[M]. Cham: Springer International Publishing, 2017, 75-104 |
[19] |
Van Hoesel A, Reidsma FH, van Os BJH, et al. Combusted bone: Physical and chemical changes of bone during laboratory simulated heating under oxidising conditions and their relevance for the study of ancient fire use[J]. Journal of Archaeological Science: Reports, 2019,28:102033
doi: 10.1016/j.jasrep.2019.102033 URL |
[20] |
Elliott JC. Calcium Phosphate Biominerals[J]. Reviews in Mineralogy and Geochemistry, 2002,48(1):427-453
doi: 10.2138/rmg.2002.48.11 URL |
[21] |
Monge G, Carretero MI, Pozo M, et al. Mineralogical changes in fossil bone from Cueva del Angel, Spain: archaeological implications and occurrence of whitlockite[J]. Journal of Archaeological Science, 2014,46:6-15
doi: 10.1016/j.jas.2014.02.033 URL |
[22] |
Greiner M, Rodríguez-Navarro A, Heinig MF, et al. Bone incineration: An experimental study on mineral structure, colour and crystalline state[J]. Journal of Archaeological Science: Reports, 2019,25:507-518
doi: 10.1016/j.jasrep.2019.05.009 URL |
[23] |
Hiller JC, Thompson TJU, Evison MP, et al. Bone mineral change during experimental heating: an X-ray scattering investigation[J]. Biomaterials, 2003,24(28):5091-5097
pmid: 14568425 |
[24] |
Piga G, Malgosa A, Thompson TJU, et al. A new calibration of the XRD technique for the study of archaeological burned human remains[J]. Journal of Archaeological Science, 2008,35(8):2171-2178
doi: 10.1016/j.jas.2008.02.003 URL |
[25] |
Rogers K, Beckett S, Kuhn S, et al. Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010,296(1-2):125-129
doi: 10.1016/j.palaeo.2010.06.021 URL |
[26] | 张双权, 张乐, 栗静舒, 等. 晚更新世晚期中国古人类的广谱适应生存——动物考古学的证据[J]. 中国科学:地球科学, 2016,8:1024-1036 |
[27] |
Aldeias V. Experimental Approaches to Archaeological Fire Features and Their Behavioral Relevance[J]. Current Anthropology, 2017,58(S16):S191-S205
doi: 10.1086/691210 URL |
[28] | McKinley JI. The Anglo-Saxon Cemetery at Spong Hill, North Elmham Part VIII: The Cremations. East Anglian Archaeology Report NO.69[M]. Dereham: Norfolk Museum Service, 1994 |
[29] |
Forbes G, Sc. B, B, MBC, et al. The Effects of Heat on the Histological Structure of Bone[J]. The Police Journal, 1941,14(1):50-60
doi: 10.1177/0032258X4101400108 URL |
[30] |
Posner AS. Crystal Chemistry of Bone Mineral[J]. Physiological Reviews, 1969,49(4):760-787
doi: 10.1152/physrev.1969.49.4.760 URL |
[31] |
Jumpei A, Seiichi M. Ca3(PO4)2 - CaNaPO4 System[J]. Bulletin of the Chemical Society of Japan, 1968,41(2):342-347
doi: 10.1246/bcsj.41.342 URL |
[32] | Piga G, Amarante A, Makhoul C, et al. β-Tricalcium Phosphate Interferes with the Assessment of Crystallinity in Burned Skeletal Remains[J]. Journal of Spectroscopy, 2018, ( 3-4):1-10 |
[1] | LI Yao, CHEN Hong, XU Ting. Use-wear characteristics of the obsidian experimental artifacts [J]. Acta Anthropologica Sinica, 2024, 43(05): 727-743. |
[2] | LIANG Zhidong, MA Pan, LIANG Jiazhi. Difference analysis of bone mineral density of college students in different sport projects [J]. Acta Anthropologica Sinica, 2024, 43(04): 648-656. |
[3] | LI Yinan, ZHAO Fangchao, ZHOU Yawei. Characteristics of human burnt bones from the Balizhuang site of Changle, Shandong Province and the cremation styles reflected by it [J]. Acta Anthropologica Sinica, 2024, 43(03): 367-379. |
[4] | DU Yuwei, ZHANG Yue, YE Zhi, PEI Shuwen. A taphonomic analysis of faunal remains from the Jijiazhuang Paleolithic site in the Yuxian Basin [J]. Acta Anthropologica Sinica, 2023, 42(03): 359-372. |
[5] | ZHANG Yuzhe, TONG Guang, ZHANG Yueshu, HU Xiaochun, LI Feng. Blind test experiments in the technological interpretation of lithic artifacts [J]. Acta Anthropologica Sinica, 2022, 41(06): 994-1004. |
[6] | LI Nan, LI Chengwei, HE Jianing. A suspected case of the Yue penalty in the Western Zhou period [J]. Acta Anthropologica Sinica, 2022, 41(05): 826-836. |
[7] | HOU Yanfeng, ZHANG Jian, CAO Yanpeng, JIN Songan. Faunal remains of the Yangshao period from the Gouwan site, Xichuan county, Henan province [J]. Acta Anthropologica Sinica, 2022, 41(05): 913-926. |
[8] | XU Yunliang. Effects of different ball games on bone mineral density and directional asymmetry of upper and lower limbs in college students [J]. Acta Anthropologica Sinica, 2021, 40(06): 1023-1031. |
[9] | WU Xianzhu, CHEN Yuzhi, Drozdov NI. Mogera robusta fossils from the Listvenka site, Siberia [J]. Acta Anthropologica Sinica, 2021, 40(06): 1032-1040. |
[10] | LU Liqun, DONG Bing, CHEN Shengqian. An experimental study on Paleolithic spheroids of China [J]. Acta Anthropologica Sinica, 2021, 40(04): 587-599. |
[11] | DAI Jingwen, ZHANG Shuangquan, ZHANG Yue. Exploitation of animal bone fat by prehistoric human [J]. Acta Anthropologica Sinica, 2021, 40(03): 503-512. |
[12] | HU Yaowu. Definition, history, principles and aims of stable isotope bioarchaeology [J]. Acta Anthropologica Sinica, 2021, 40(03): 526-534. |
[13] | TAO Dawei, ZHANG Guowen, ZHOU Yawei, CHEN Zhaoyun, HAN Guohe. Population and society in Guanzhuang settlement during Zhou Dynasty based on bioarchaeological perspective [J]. Acta Anthropologica Sinica, 2021, 40(02): 320-327. |
[14] | HUANG Chao, ZHANG Shuangquan. Technological analysis of burned bones and its implications for Paleolithic archaeology [J]. Acta Anthropologica Sinica, 2020, 39(02): 249-260. |
[15] | ZHANG Shuangquan, SONG Yanhua, ZHANG Yue, XU Le, LI Lei, SHI Jinming. A zooarchaeological analysis of the burned bone from the Shizitan Site 9, Shanxi, China [J]. Acta Anthropologica Sinica, 2019, 38(04): 598-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||