Research Articles

A study of Weizang and Kham Tibetans’ somatotype by Heath-Carter method

  • Jinping BAO ,
  • Keli YU ,
  • Yonglan LI ,
  • Chong LI ,
  • Xinghua ZHANG ,
  • Lianbin ZHENG
Expand
  • 1. Institute of Sports Science, Tianjin Normal University, Tianjin 300387
    2. College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin 300387
    3. College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022
    4. College of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010022

Received date: 2020-07-03

  Revised date: 2020-07-30

  Online published: 2020-09-30

Abstract

The somatotypes of 400 Kham Tibetan adults in Diqing of Yunnan Province and 507 Weizang Tibetan adults in Linzhi of Tibet were studied by the Heath-Carter method. Both Weizang Tibetan males(5.0-6.2-1.1) and Kham Tibetan males(4.4-5.1-1.6) are endomorphic mesomorph. Both Weizang Tibetan females (5.7-6.1-0.8) and Kham Tibetan females(5.6-5.7-1.1) are endomorph mesomorph. In general, the Tibetans of Weizang and Kham have the same somatotype, and there are also differences. The Weizang and Kham Tibetans have low linearity, strong bones and muscles, and higher body fat. The Weizang Tibetans have more fat, stronger muscles and bones, and fuller body than Kham Tibetans. From the perspective of the Tibetan origin and the living environment, this article explores the similarities and differences of somatotypes between the Weizang and Kham Tibetans, and the reasons for the differences of somatotypes between ethnic groups living at high altitudes. The research results suggest that the Tibetans have the somatotype characteristics of Chinese northern ethnic groups. The somatotype characteristics of fleshy body fat, strong skeletal muscles and stout bodies of Tibetans are also adapted to the plateau environment.

Cite this article

Jinping BAO , Keli YU , Yonglan LI , Chong LI , Xinghua ZHANG , Lianbin ZHENG . A study of Weizang and Kham Tibetans’ somatotype by Heath-Carter method[J]. Acta Anthropologica Sinica, 2021 , 40(05) : 834 -846 . DOI: 10.16359/j.cnki.cn11-1963/q.2020.0038

References

[1] 郑连斌, 李咏兰, 席焕久. 中国汉族体质人类学研究[M]. 北京: 科学出版社, 2017
[2] Weiner JS. Practical human biology[J]. Academic Press, 1981
[3] 包金萍, 郑连斌, 张兴华, 等. 海南文昌乡村汉族成人体型特征的研究[J]. 天津师范大学学报(自然科学版), 2013, 33(4):73-77
[4] 包金萍, 郑连斌, 陆舜华, 等. 江西赣州城市成年客家人体型及其年龄变化[J]. 人类学学报, 2015, 34(3):390-396
[5] 魏榆, 宇克莉, 张兴华, 等. 四川羌族成人的Heath-Carter体型特征[J]. 天津师范大学学报(自然科学版), 2017, 37(5):70-74
[6] 罗东梅, 郑连斌, 陆舜华, 等. 怒族成人Heath-Carter法体型研究[J]. 天津师范大学学报(自然科学版), 2007, 27(4):11-15
[7] 李咏兰, 胡慧媛. 从体型认定摩梭人的民族身份归属[J]. 解剖学报, 2018, 49(6):786-792
[8] 魏榆, 宇克莉, 郑连斌, 等. 白马人成人体型特征与HWR值研究[J]. 南京师范大学学报(自然科学版), 2018, 41(2): 89-92+98
[9] 郑连斌, 陆舜华, 张兴华, 等. 中国莽人、僜人、珞巴族与门巴族Heath-Carter法体型研究[J]. 人类学学报, 2010, 29(2):176-181
[10] 魏榆, 张兴华, 宇克莉, 等. 中国基诺族、木雅人、尔苏人、八甲人与空格人5个族群的体型特征[J]. 解剖学学报, 2017, 48(5):605-609
[11] 石硕. 藏族的地域特点及相关问题——兼论康区之特点[J]. 青海民族大学学报(社会科学版), 2015, 41(1):29-32
[12] 任甫, 温有锋, 席焕久, 等. 拉萨市藏族青少年体型的Heath-Carter法研究[J]. 解剖学杂志, 2005, 28(2):215-218
[13] 温有锋, 席焕久, 叶丽平, 等. 那曲地区藏族青少年体型Heath-Carter法研究[J]. 解剖学杂志, 2006, 29(4):417-420
[14] 温有锋, 叶丽平, 席焕久, 等. 西藏藏族青少年体型[J]. 人类学学报, 2009, 28(1):64-72
[15] 席焕久, 陈昭. 人体测量方法[M]. 北京: 科学出版社, 2010
[16] Carter JEL, Heath BH. Somatotyping development and applications[M]. London: Cambridge University Press, 1999: 373-387
[17] 李咏兰, 郑连斌. 中国蒙古族体质人类学研究[M]. 北京: 科学出版社, 2018
[18] 任新建. 论康藏的历史关系[J]. 中国藏学, 2004(4):84-91
[19] 石硕. 试论康区藏族的形成及其特点[J]. 西南民族学院学报(哲学社会科学版), 1993(2):22-28
[20] 古瑟普·詹纳, 杨元芳, 陈宗祥. 西藏拉萨出土的古人类遗骸[J]. 中国藏学, 1990(4):140-149
[21] 陈锋. 西藏世居人群的母系遗传多样性和夏尔巴人遗传特征[D]. 咸阳:西藏民族学院, 2014
[22] Zhang C, Lu Y, Feng Q, et al. Differentiated Demographic Histories and Local Adaptations between Sherpas an Tibetans[J]. Genome Biology, 2017, 18(1):115
[23] Yao HB, Tang S, Yao X, et al. The Genetic Admixture in Tibetan-Yi Corridor[J]. American Journal of Physical Anthropology, 2017, 164(3):522-532
[24] 郑连斌, 陆舜华. 我国23个群体体质的聚类分析与主成分分析[J]. 人类学学报, 1997, 16(2):66-73
[25] 黎彦才, 胡兴宇, 汪澜. 中国33个少数民族(部族)体质特征的比较研究[J]. 人类学学报, 1993, 12(1):49-54
[26] Zhang M, Yan S, Pan W, et al. Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic[J]. Nature, 2019, 569(7754):112-115
[27] Sagart L, Jacques G, Lai Y, et al. Dated language phylogenies shed light on the ancestry of Sino-Tibetan[J]. Proceedings of the National Academy of Sciences, 2019, 116(21). DOI: 10.1073/pnas. 1817972116
[28] 任树民. 汉藏同根同源历史踪迹溯源考[J]. 西藏大学学报(汉文版), 2004(2):22-26
[29] 李霞, 季碧霞, 张咸宁, 等. 青海藏族HLAⅡ类基因多态性的研究[J]. 遗传, 1999, 21(5):5-8
[30] Scheinfeldt LB, Soi S, Thompson S, et al. Genetic adaptation to high altitude in the Ethiopian highlands[J]. Genome Biology, 2012, 13(1):R1
[31] Wang P, Ha AY, Kidd KK, et al. A variant of the endothelial nitric oxide synthase gene (NOS3) associated with AMS susceptibility is less common in the Quechua, a high altitude Native population[J]. High Altitude Medicine And Biology, 2010, 11(1):27-30
[32] Bigham AW, Wilson M, Julian CG, et al. Andean and Tibetan patterns of adaptation to high altitude[J]. American Journal of Human Biology, 2013, 25(2):190-197
[33] Deng L, Zhang C, Yuan K, et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders[J]. National Science Review, 2019, 6(6):1201-1222
[34] Ouzhuluobu, He Y, Lou Y, et al. De novo assembly of a Tibetan genome and identification of novel structural variants associated with high-altitude adaptation[J]. National Science Review, 2020, (2):391-402
[35] Li Y, Tian J, Liu F, et al. Neolithic millet farmers contributed to the permanent settlement of the Tibetan Plateau by adopting barley agriculture[J]. National Science Review, 2019, 6(5):1005-1013
[36] Roberts DF. Climate and human variability[J]. 1978
[37] Wells JCK. Ecogeographical associations between climate and human body composition: Analyses based on anthropometry and skinfolds[J]. American Journal of Physical Anthropology, 2012, 147(2):169-186
Outlines

/