Acta Anthropologica Sinica ›› 2025, Vol. 44 ›› Issue (05): 917-926.doi: 10.16359/j.1000-3193/AAS.2025.0069
• Isotope, Palynology, Paleoprotein • Previous Articles
TANG Siyuan1,2(
), LIU Sitong1,2, ZHOU Kai1, RAO Huiyun1, WU Xiujie1, FU Qiaomei1,2(
)
Received:2025-04-07
Revised:2025-07-10
Online:2025-10-15
Published:2025-10-13
CLC Number:
TANG Siyuan, LIU Sitong, ZHOU Kai, RAO Huiyun, WU Xiujie, FU Qiaomei. A preliminary study of protein preservation in animal fossils from the Hualongdong site in Dongzhi County, Anhui[J]. Acta Anthropologica Sinica, 2025, 44(05): 917-926.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2025.0069
| 编号No. | 样品Sample | Am/P | C/P | 结果Result | 编号No. | 样品Sample | Am/P | C/P | 结果Result | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 牙本质dentine | 0.011 | 0.068 | Negative | 21 | 骨骼bone | 0.011 | 0.177 | Negative | |
| 牙釉质enamel | 0 | 0.187 | Positive | 22 | 骨骼bone | 0.013 | 0.140 | Negative | ||
| 2 | 牙本质dentine | 0.016 | 0.175 | Negative | 23 | 骨骼bone | 0.016 | 0.160 | Negative | |
| 牙釉质enamel | 0 | 0.168 | Positive | 24 | 骨骼bone | 0 | 0.196 | Negative | ||
| 3 | 牙本质dentine | 0.012 | 0.182 | Negative | 25 | 骨骼bone | 0.011 | 0.188 | Negative | |
| 牙釉质enamel | 0 | 0.146 | Positive | 26 | 骨骼bone | 0.014 | 0.164 | Negative | ||
| 4 | 牙本质dentine | 0.012 | 0.136 | Negative | 27 | 骨骼bone | 0 | 0.170 | Negative | |
| 牙釉质enamel | 0 | 0.213 | Positive | 28 | 骨骼bone | 0 | 0.191 | Negative | ||
| 5 | 牙本质dentine | 0.014 | 0.172 | Negative | 29 | 骨骼bone | 0 | 0.179 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 30 | 骨骼bone | 0.011 | 0.110 | Negative | ||
| 6 | 牙本质dentine | 0.012 | 0.132 | Positive* | 31 | 骨骼bone | 0 | 0.224 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 32 | 骨骼bone | 0.019 | 0.251 | Negative | ||
| 7 | 牙本质dentine | 0.011 | 0.221 | Negative | 33 | 骨骼bone | 0.021 | 0.166 | Negative | |
| 牙釉质enamel | 0 | 0.210 | Negative | 34 | 骨骼bone | 0.021 | 0.191 | Negative | ||
| 8 | 牙本质dentine | 0.012 | 0.183 | Bovidae/Cervidae | 35 | 骨骼bone | 0.016 | 0.197 | Negative | |
| 36 | 骨骼bone | 0.018 | 0.165 | Negative | ||||||
| 9 | 牙本质dentine | 0.012 | 0.180 | Bovidae/Cervidae | 37 | 骨骼bone | 0.018 | 0.126 | Negative | |
| 38 | 骨骼bone | 0.020 | 0.170 | Negative | ||||||
| 10 | 骨骼bone | 0.019 | 0.212 | Negative | 39 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 11 | 骨骼bone | 0.014 | 0.201 | Negative | 40 | 骨骼bone | 0.015 | 0.172 | Negative | |
| 12 | 骨骼bone | 0.018 | 0.141 | Negative | 41 | 骨骼bone | 0.022 | 0.156 | Negative | |
| 13 | 骨骼bone | 0 | 0.171 | Negative | 42 | 骨骼bone | 0.019 | 0.175 | Negative | |
| 14 | 骨骼bone | 0.016 | 0.181 | Negative | 43 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 15 | 骨骼bone | 0.014 | 0.157 | Negative | 44 | 骨骼bone | 0.015 | 0.200 | Negative | |
| 16 | 骨骼bone | 0.012 | 0.179 | Negative | 45 | 骨骼bone | 0.012 | 0.237 | Negative | |
| 17 | 骨骼bone | 0.019 | 0.172 | Negative | 46 | 骨骼bone | 0.015 | 0.091 | Negative | |
| 18 | 骨骼bone | 0.013 | 0.145 | Negative | 47 | 骨骼bone | 0.018 | 0.213 | Negative | |
| 19 | 骨骼bone | 0.011 | 0.098 | Negative | 48 | 骨骼bone | 0.015 | 0.140 | Negative | |
| 20 | 骨骼bone | 0.013 | 0.119 | Negative | 49 | 骨骼bone | 0.017 | 0.152 | Negative |
Tab.1 Sample list and MALDI analysis results
| 编号No. | 样品Sample | Am/P | C/P | 结果Result | 编号No. | 样品Sample | Am/P | C/P | 结果Result | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 牙本质dentine | 0.011 | 0.068 | Negative | 21 | 骨骼bone | 0.011 | 0.177 | Negative | |
| 牙釉质enamel | 0 | 0.187 | Positive | 22 | 骨骼bone | 0.013 | 0.140 | Negative | ||
| 2 | 牙本质dentine | 0.016 | 0.175 | Negative | 23 | 骨骼bone | 0.016 | 0.160 | Negative | |
| 牙釉质enamel | 0 | 0.168 | Positive | 24 | 骨骼bone | 0 | 0.196 | Negative | ||
| 3 | 牙本质dentine | 0.012 | 0.182 | Negative | 25 | 骨骼bone | 0.011 | 0.188 | Negative | |
| 牙釉质enamel | 0 | 0.146 | Positive | 26 | 骨骼bone | 0.014 | 0.164 | Negative | ||
| 4 | 牙本质dentine | 0.012 | 0.136 | Negative | 27 | 骨骼bone | 0 | 0.170 | Negative | |
| 牙釉质enamel | 0 | 0.213 | Positive | 28 | 骨骼bone | 0 | 0.191 | Negative | ||
| 5 | 牙本质dentine | 0.014 | 0.172 | Negative | 29 | 骨骼bone | 0 | 0.179 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 30 | 骨骼bone | 0.011 | 0.110 | Negative | ||
| 6 | 牙本质dentine | 0.012 | 0.132 | Positive* | 31 | 骨骼bone | 0 | 0.224 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 32 | 骨骼bone | 0.019 | 0.251 | Negative | ||
| 7 | 牙本质dentine | 0.011 | 0.221 | Negative | 33 | 骨骼bone | 0.021 | 0.166 | Negative | |
| 牙釉质enamel | 0 | 0.210 | Negative | 34 | 骨骼bone | 0.021 | 0.191 | Negative | ||
| 8 | 牙本质dentine | 0.012 | 0.183 | Bovidae/Cervidae | 35 | 骨骼bone | 0.016 | 0.197 | Negative | |
| 36 | 骨骼bone | 0.018 | 0.165 | Negative | ||||||
| 9 | 牙本质dentine | 0.012 | 0.180 | Bovidae/Cervidae | 37 | 骨骼bone | 0.018 | 0.126 | Negative | |
| 38 | 骨骼bone | 0.020 | 0.170 | Negative | ||||||
| 10 | 骨骼bone | 0.019 | 0.212 | Negative | 39 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 11 | 骨骼bone | 0.014 | 0.201 | Negative | 40 | 骨骼bone | 0.015 | 0.172 | Negative | |
| 12 | 骨骼bone | 0.018 | 0.141 | Negative | 41 | 骨骼bone | 0.022 | 0.156 | Negative | |
| 13 | 骨骼bone | 0 | 0.171 | Negative | 42 | 骨骼bone | 0.019 | 0.175 | Negative | |
| 14 | 骨骼bone | 0.016 | 0.181 | Negative | 43 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 15 | 骨骼bone | 0.014 | 0.157 | Negative | 44 | 骨骼bone | 0.015 | 0.200 | Negative | |
| 16 | 骨骼bone | 0.012 | 0.179 | Negative | 45 | 骨骼bone | 0.012 | 0.237 | Negative | |
| 17 | 骨骼bone | 0.019 | 0.172 | Negative | 46 | 骨骼bone | 0.015 | 0.091 | Negative | |
| 18 | 骨骼bone | 0.013 | 0.145 | Negative | 47 | 骨骼bone | 0.018 | 0.213 | Negative | |
| 19 | 骨骼bone | 0.011 | 0.098 | Negative | 48 | 骨骼bone | 0.015 | 0.140 | Negative | |
| 20 | 骨骼bone | 0.013 | 0.119 | Negative | 49 | 骨骼bone | 0.017 | 0.152 | Negative |
| [1] | Wu XJ, Pei SW, Cai YJ, et al. Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 9820-9824 |
| [2] | 宫希成, 郑龙亭, 邢松, 等. 安徽东至华龙洞出土的人类化石[J]. 人类学学报, 2014, 33(4): 427-436 |
| [3] | 陈胜前, 罗虎. 安徽东至县华龙洞旧石器时代遗址发掘简报[J]. 考古, 2012, 4: 7-13 |
| [4] | 同号文, 吴秀杰, 董哲, 等. 安徽东至华龙洞古人类遗址哺乳动物化石的初步研究[J]. 人类学学报, 2018, 37(2): 284-305 |
| [5] | 裴树文, 蔡演军, 董哲, 等. 安徽东至华龙洞遗址洞穴演化与古人类活动[J]. 人类学学报, 2022, 41(4): 593-607 |
| [6] | 董哲, 战世佳. 安徽东至县华龙洞旧石器时代遗址出土石制品研究[J]. 东南文化, 2015, 6: 63-71 |
| [7] | 董哲, 裴树文, 盛锦朝, 等. 安徽东至华龙洞古人类遗址2014-2016年出土的石制品[J]. 第四纪研究, 2017, 37(4): 778-788 |
| [8] | 李潇丽, 董哲, 裴树文, 等. 安徽东至华龙洞洞穴发育与古人类生存环境[J]. 海洋地质与第四纪地质, 2017, 37(3): 169-179 |
| [9] | 刘武, 吴秀杰, 邢松. 更新世中期中国古人类演化区域连续性与多样性的化石证据[J]. 人类学学报, 2019, 38(4): 473-490 |
| [10] | Jiangzuo QG, Werdelin L, Zhang K, et al. Prionailurus kurteni (Felidae, Carnivora), a new species of small felid from the late Middle Pleistocene fossil hominin locality of Hualongdong, southern China[J]. Annales Zoologici Fennici, 2024, 61(1): 335-342 |
| [11] | Wu XJ, Pei SW, Cai YJ, et al. Morphological description and evolutionary significance of 300 ka hominin facial bones from Hualongdong, China[J]. Journal of Human Evolution, 2021, 161: 103052 |
| [12] | Xing S, Wu XJ, Liu W, et al. Middle Pleistocene human femoral diaphyses from Hualongdong, Anhui Province, China[J]. American Journal of Physical Anthropology, 2021, 174(2): 285-298 |
| [13] | Wu XJ, Pei SW, Cai YJ, et al. Morphological and morphometric analyses of a late Middle Pleistocene hominin mandible from Hualongdong, China[J]. Journal of Human Evolution, 2023, 182: 103411 |
| [14] | 吴秀杰, 张伟. 中国古人类颅容量的推算方法比较[J]. 人类学学报, 2019, 38(4): 513-524 |
| [15] | 刘武, 惠家明, 何嘉宁, 等. 门齿孔位置在中国古人类化石与现代人群的表现及其演化意义[J]. 人类学学报, 2021, 40(5): 739-750 |
| [16] | 刘武, 吴秀杰. 中更新世晚期中国古人类化石的形态多样性及其演化意义[J]. 人类学学报, 2022, 41(4): 563-575 |
| [17] | Liu W, Athreya S, Xing S, et al. Hominin evolution and diversity: A comparison of earlier-Middle and later-Middle Pleistocene hominin fossil variation in China[J]. Philosophical Transactions of the Royal Society B, 2022, 377(1849): 20210040 |
| [18] | 刘武. 二十一世纪中国人类演化研究的发现、认识与理论探索[J]. 人类学学报, 2024, 43(6): 881-899 |
| [19] | Chen FH, Welker F, Shen CC, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau[J]. Nature, 2019, 569: 409-412 |
| [20] | Xia H, Zhang DJ, Wang J, et al. Middle and Late Pleistocene Denisovan subsistence at Baishiya Karst Cave[J]. Nature, 2024, 632: 108-113 |
| [21] | Welker F, Hajdinjak M, Talamo S, et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne[J]. Proceedings of the National Academy of Sciences, 2016, 113: 201605834 |
| [22] | Welker F, Ramos-Madrigal J, Gutenbrunner P, et al. The dental proteome of Homo antecessor[J]. Nature, 2020, 580: 235-238 |
| [23] |
Demeter F, Shackelford L, Zanolli C, et al. A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos[J]. Nature Communications, 2022, 13: 2557
doi: 10.1038/s41467-022-29923-z pmid: 35581187 |
| [24] | Welker F, Ramos-Madrigal J, Kuhlwilm M, et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine[J]. Nature, 2019, 576: 262-265 |
| [25] | Paterson RS, Mackie M, Capobianco A, et al. A 20+ Ma Old Enamel Proteome from Canada's High Arctic Reveals Diversification of Rhinocerotidae in the Middle Eocene-Oligocene[CP/OL]. bioRxiv, 2024. 06.07.597871. doi: https://doi.org/10.1101/2024.06.07.597871 |
| [26] | Demarchi B, Stiller j, Grealy A, et al. Ancient proteins resolve controversy over the identity of Genyornis eggshell[J]. Proceedings of the National Academy of Sciences, 2022, 119 (43): e2109326119 |
| [27] | Demarchi B, Mackie M, Li ZH, et al. Survival of mineral-bound peptides into the Miocene[J]. eLife, 2022, 11: e82849 |
| [28] | Demarchi B, Hall S, Roncal-Herrero T, et al. Protein sequences bound to mineral surfaces persist into deep time[J]. eLife, 2016, 5: e17092 |
| [29] |
Stolarski J, Drake J, Coronado I, et al. First paleoproteome study of fossil fish otoliths and the pristine preservation of the biomineral crystal host[J]. Scientific Reports, 2023, 13: 3822
doi: 10.1038/s41598-023-30537-8 pmid: 36882485 |
| [30] | Cappellini E, Welker F, Pandolfi L, et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny[J]. Nature, 2019, 574: 103-107 |
| [31] |
Cappellini E, Jensen LJ, Szklarczyk D, et al. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins[J]. Journal of Proteome Research, 2012, 11(2): 917-926
doi: 10.1021/pr200721u pmid: 22103443 |
| [32] |
Rybczynski N, Gosse J C, Richard Harington C, et al. Mid-Pliocene warm-period deposits in the high arctic yield insight into camel evolution[J]. Nature Communications, 2013, 4: 1550
doi: 10.1038/ncomms2516 pmid: 23462993 |
| [33] | Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity[J]. Nature Genetics, 2013, 4(4): 336-344 |
| [34] | Sawafuji R, Cappellini E, Nagaoka T, et al. Proteomic profiling of archaeological human bone[J]. Royal Society Open Science, 2017, 4(6): 161004 |
| [35] | Tsutaya T, Sawafuji R, Taurozzi AJ, et al. A male Denisovan mandible from Pleistocene Taiwan[J]. Science, 2025, 388(6743): 176-180 |
| [36] | Presslee S, Penkman K, Fischer R, et al. Assessment of different screening methods for selecting palaeontological bone samples for peptide sequencing[J]. Journal of Proteomics, 2021, 230: 103986 |
| [37] | Hollund HI, Ariese F, Fernandes R, et al. Testing an alternative High-throughput tool for investigating bone Diagenesis: FTIR in attenuated Total reflection (ATR) mode[J]. Archaeometry, 2013, 55: 507-532 |
| [38] | Scaggion C, Marinato M, Dal Sasso G, et al. A fresh perspective on infrared spectroscopy as a prescreening method for molecular and stable isotopes analyses on ancient human bones[J]. Scientific Reports, 2024, 14: 1028 |
| [39] | Buckley M, Collins M, Thomas-Oates J, et al. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrometr, 2009, 23(23): 3843-3854 |
| [40] | Buckley M, Fraser S, Herman J, et al. Species identification of archaeological marine mammals using collagen fingerprinting[J]. Journal of Archaeological Science, 2014, 41(Suppl. C): 631-641 |
| [41] | Welker F, Soressi M, Rendu W, et al. Using ZooMS to identify fragmentary bone from the late middle / early upper Palaeolithic sequence of les Cottes, France[J]. Journal of Archaeological Science, 2015, 54: 279-286 |
| [42] | Harvey VL, Daugnora L, Buckley M, et al. Species identification of ancient Lithuanian fish remains using collagen fingerprinting[J]. Journal of Archaeological Science, 2018, 98: 102-111 |
| [43] |
Lacruz RS, Habelitz S, Wright JT, et al. Dental Enamel Formation and Implications for Oral Health and Disease[J]. Physiological Reviews, 2017, 97(3): 939-993
doi: 10.1152/physrev.00030.2016 pmid: 28468833 |
| [44] | Kontopoulos I, Penkman K, Mullin VE, et al. Screening archaeological bone for palaeogenetic and palaeoproteomic studies[J]. PLoS ONE, 2020, 15(6): e0235146 |
| [45] |
Pal Chowdhury M, Wogelius R, Manning PL, et al. Collagen deamidation in archaeological bone as an assessment for relative decay rates[J]. Archaeometry, 2019, 61(6): 1382-1398
doi: 10.1111/arcm.12492 |
| [46] | Taurozzi AJ, Ruther PL, Patramanis I, et al. Deep-time phylogenetic inference by paleoproteomic analysis of dental enamel[J]. Nature Protocols, 2024, 19(5): 2085-2116 |
| [47] | Porto IM, Laure HJ, Tykot RH, et al. Recovery and identification of mature enamel proteins in ancient teeth[J]. European Journal of Oral Sciences, 2011, 119: 83-87 |
| [1] | ZHENG Mingcong, WANG Jingyi, YAN Yi, CHEN Yiying, WU Yan. Dietary ecology of gaur from the Hualongdong site in Anhui Province [J]. Acta Anthropologica Sinica, 2025, 44(05): 895-905. |
| [2] | LIU Sitong, LIU Boxuan, JIN Zetian, DENG Guodong, TONG Haowen, WU Xiujie. Mammalian astragalus fossils excavated at Hualongdong site [J]. Acta Anthropologica Sinica, 2025, 44(05): 816-835. |
| [3] | PEI Shuwen, DONG Zhe, GENG Shuaijie, YE Zhi, MA Dongdong, ZHANG Yameng, JIN Zetian. Lithic assemblage and adaptive behaviors of hominins at Hualongdong site [J]. Acta Anthropologica Sinica, 2025, 44(05): 765-778. |
| [4] | JIN Zetian, WU Xiujie, DENG Guodong, LIU Wu. Craniofacial reconstruction and morphological characteristics of Hualongdong No.6 hominid skull [J]. Acta Anthropologica Sinica, 2025, 44(05): 754-764. |
| [5] | CAI Yanjun, PEI Shuwen, JIN Zetian. Sedimentary feature and chronology of Hualongdong site in Dongzhi, Anhui Province [J]. Acta Anthropologica Sinica, 2025, 44(05): 742-753. |
| [6] | LIU Wu, WU Xiujie. The hominin fossils from Hualongdong and their significance on human evolution [J]. Acta Anthropologica Sinica, 2025, 44(05): 727-741. |
| [7] | RAO Huiyun. An application prospect of paleoproteomic analysis in the evolution of East Asian populations [J]. Acta Anthropologica Sinica, 2022, 41(06): 1083-1096. |
| [8] | PEI Shuwen, CAI Yanjun, DONG Zhe, TONG Haowen, SHENG Jinchao, JIN Zetian, WU Xiujie, LIU Wu. Evolution of cave system at Hualongdong, Anhui and its relation to human occupation [J]. Acta Anthropologica Sinica, 2022, 41(04): 593-607. |
| [9] | Shen Guanjun, Tah-Lung Ku, Bassam Gahleb et al.. Preliminary results on U-series dating of Peking Man Site with high precision TIMS [J]. Acta Anthropologica Sinica, 1996, 15(03): 210-217. |
| [10] | S.Weiner, S.Schiegl, O. Bar-Yosef. Recognizing ash deposits in the archaeological record: A mineralogical study at Kebara and Hayonim Caves, Israel [J]. Acta Anthropologica Sinica, 1995, 14(04): 340-351. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||