人类学学报 ›› 2022, Vol. 41 ›› Issue (05): 883-898.doi: 10.16359/j.1000-3193/AAS.2021.0071cstr: 32091.14.j.1000-3193/AAS.2021.0071
葛利花1,2(), 朱超3, 安静平4, 王振祥5, 靳桂云6()
收稿日期:
2019-12-16
修回日期:
2021-05-14
出版日期:
2022-10-15
发布日期:
2022-10-13
通讯作者:
靳桂云
作者简介:
葛利花,博士研究生,主要从事新石器时代考古与生业经济研究。Email: 基金资助:
GE Lihua1,2(), ZHU Chao3, AN Jingping4, WANG Zhenxiang5, JIN Guiyun6()
Received:
2019-12-16
Revised:
2021-05-14
Online:
2022-10-15
Published:
2022-10-13
Contact:
JIN Guiyun
摘要:
龙山文化是中国史前社会形态演进的关键阶段,亦是农业强化生产的关键时期。城子崖遗址是鲁北平原史前区域中心城址,其生业经济研究有助于理解该地区社会复杂化及文明进程。本文对城子崖遗址龙山时期不同遗迹单位的15份土样进行了系统的植硅体分析,尝试探讨了该遗址龙山文化时期的社会发展和生业经济水平、农作物生产和加工方式、野生植物资源利用情况以及各遗迹堆积及其所反映的人类行为活动信息。结果显示,该遗址龙山文化时期已形成粟、黍、稻、小麦、稗(可能)的农作物组合方式;同时,广泛采集利用聚落周边的自然植物资源,是农业与采集业并存发展的生业经济模式。先民在作物栽培中进行了锄草、灌溉等较为精细的管理,其中,黍较粟更具耐旱抗病特性,加上田间管理需求较低而被优先选择栽培。先民在收获作物时,采用类似割穗、掐穗等方法以减少作物茎秆及杂草混入,随后在户外进行小规模地脱壳、扬场工作。此外,根据灰坑中植硅体的组合特征可将其分为生活垃圾、谷物加工、蓄水淘米三个类型, 水井和墓葬内的植硅体则分别与生活环境和丧葬环节等信息相关。
中图分类号:
葛利花, 朱超, 安静平, 王振祥, 靳桂云. 城子崖遗址植硅体反映的生业经济模式[J]. 人类学学报, 2022, 41(05): 883-898.
GE Lihua, ZHU Chao, AN Jingping, WANG Zhenxiang, JIN Guiyun. Subsistence economy model reflected by phytolith from the Chengziya site[J]. Acta Anthropologica Sinica, 2022, 41(05): 883-898.
编号Number | H15(1) | H15(2) | H28 | H402 | H530 | H585 | H594 | H606 | H622 | H624 | H628 | H629 | H631 | J6 | M24 | 总计Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
稻鱼鳞纹扇型Rice bulliform | 6 | 0 | 0 | 9 | 5 | 18 | 5 | 8 | 5 | 1 | 6 | 4 | 9 | 3 | 2 | 81 |
稻横排哑铃型Parallel bilobate from rice | 0 | 4 | 0 | 1 | 0 | 3 | 1 | 1 | 2 | 9 | 2 | 1 | 1 | 0 | 0 | 25 |
稻双峰型Double peaked phytolith from rice | 2 | 5 | 1 | 18 | 6 | 20 | 16 | 6 | 16 | 3 | 5 | 12 | 5 | 6 | 2 | 123 |
粟Ω型Ω-type husk phytolith from foxtail millet | 31 | 69 | 40 | 0 | 29 | 10 | 30 | 12 | 63 | 63 | 8 | 22 | 16 | 9 | 32 | 434 |
黍η型η-type husk phytolith from broomcorn millet | 35 | 50 | 25 | 4 | 56 | 35 | 73 | 33 | 103 | 60 | 13 | 25 | 40 | 4 | 81 | 637 |
竖排哑铃型Vertical bilobates | 2 | 9 | 16 | 0 | 27 | 7 | 13 | 4 | 4 | 47 | 19 | 19 | 34 | 51 | 8 | 260 |
稗子β型β-type from barnyard millet | 1 | 2 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 13 |
小麦帽型Hat phytolith from wheat | 2 | 1 | 5 | 0 | 5 | 2 | 0 | 0 | 1 | 0 | 3 | 3 | 2 | 0 | 3 | 27 |
小麦树枝型Dendritic phytolith from wheat | 0 | 0 | 0 | 0 | 3 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 10 |
芦苇扇型Fan-reed | 0 | 0 | 2 | 21 | 0 | 7 | 2 | 4 | 4 | 0 | 4 | 7 | 2 | 0 | 1 | 54 |
芦苇鞍型Saddle phytolith from reed | 1 | 0 | 0 | 0 | 7 | 0 | 1 | 5 | 2 | 1 | 5 | 2 | 0 | 1 | 0 | 25 |
短柄扇型Short handle Cuneiform bulliform | 1 | 1 | 5 | 10 | 0 | 7 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 31 |
长柄扇型Long handle Cuneiform bulliform | 17 | 5 | 4 | 56 | 1 | 49 | 11 | 27 | 20 | 2 | 35 | 27 | 13 | 9 | 23 | 299 |
竹亚科扇型Cuneiform Bambusoideae | 1 | 0 | 5 | 8 | 1 | 8 | 8 | 6 | 7 | 1 | 6 | 9 | 3 | 4 | 2 | 69 |
短尖型Unciform hair cell | 8 | 14 | 17 | 43 | 15 | 26 | 23 | 45 | 45 | 29 | 20 | 39 | 50 | 13 | 26 | 413 |
长尖型long point | 10 | 5 | 2 | 31 | 7 | 21 | 19 | 30 | 27 | 17 | 12 | 48 | 12 | 8 | 14 | 263 |
方型Trapeziform | 18 | 1 | 8 | 82 | 1 | 39 | 28 | 25 | 21 | 10 | 33 | 40 | 12 | 12 | 21 | 351 |
长方型Rectangle | 13 | 0 | 5 | 51 | 5 | 33 | 13 | 34 | 14 | 2 | 25 | 26 | 4 | 3 | 6 | 234 |
成组Group cuneiforms | 0 | 0 | 1 | 1 | 0 | 8 | 1 | 7 | 6 | 0 | 4 | 1 | 4 | 7 | 1 | 41 |
哑铃型Bilobate | 190 | 231 | 201 | 10 | 140 | 31 | 57 | 59 | 11 | 170 | 103 | 66 | 155 | 267 | 122 | 1813 |
十字型Cross | 4 | 2 | 7 | 3 | 23 | 2 | 6 | 2 | 1 | 4 | 3 | 0 | 7 | 13 | 6 | 83 |
多铃型Cylindrical polylobate | 5 | 12 | 6 | 0 | 13 | 2 | 4 | 2 | 0 | 7 | 6 | 3 | 1 | 4 | 3 | 68 |
平滑棒型Elongate psilate | 97 | 53 | 65 | 66 | 75 | 68 | 74 | 83 | 62 | 53 | 85 | 82 | 64 | 16 | 98 | 1041 |
刺棒型Elongate echinate | 31 | 18 | 28 | 58 | 38 | 68 | 82 | 65 | 65 | 37 | 65 | 76 | 60 | 14 | 59 | 764 |
画眉草亚科短鞍型Short saddle from Subfam. Eragrostoideae pilger | 4 | 1 | 3 | 1 | 3 | 3 | 0 | 5 | 1 | 1 | 2 | 2 | 0 | 1 | 4 | 31 |
中鞍型Middle-saddle phytolith | 5 | 0 | 4 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 14 |
竹亚科长鞍型Long saddle phytoliths of Bambusoideae | 8 | 3 | 7 | 3 | 2 | 3 | 4 | 3 | 0 | 1 | 6 | 2 | 2 | 2 | 2 | 48 |
尖顶帽型Tower | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 6 |
平顶帽型Rondel | 4 | 0 | 0 | 1 | 1 | 4 | 1 | 2 | 2 | 0 | 1 | 6 | 3 | 0 | 3 | 28 |
莎草科多边帽型Sedge conial type | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 10 |
导管型Cylindric sulcate tracheid | 5 | 1 | 9 | 0 | 2 | 4 | 7 | 5 | 3 | 4 | 1 | 8 | 3 | 5 | 8 | 65 |
毛发型Unciform hair | 0 | 0 | 5 | 1 | 3 | 1 | 0 | 0 | 0 | 4 | 0 | 1 | 0 | 4 | 5 | 24 |
树枝型Dentritic | 2 | 4 | 2 | 0 | 0 | 2 | 0 | 2 | 4 | 0 | 0 | 2 | 0 | 2 | 2 | 22 |
齿型Trapeziform sinuate | 5 | 0 | 0 | 1 | 1 | 5 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 5 | 25 |
蕨科三棱柱型Pteridium aquilinum Kuhn var. japonicum Nakai | 2 | 0 | 1 | 5 | 26 | 22 | 9 | 6 | 14 | 3 | 10 | 7 | 1 | 2 | 11 | 119 |
禾本科Gramineae | 0 | 0 | 0 | 3 | 3 | 1 | 5 | 16 | 3 | 7 | 1 | 6 | 4 | 49 | 0 | 98 |
黍亚科Panicoideae | 0 | 0 | 1 | 3 | 13 | 7 | 5 | 7 | 12 | 9 | 3 | 6 | 2 | 2 | 1 | 71 |
早熟禾亚科Pooideae | 0 | 0 | 7 | 1 | 4 | 0 | 3 | 3 | 7 | 6 | 2 | 5 | 3 | 34 | 0 | 75 |
芒属Miscanthus species | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 3 | 2 | 0 | 3 | 0 | 6 | 1 | 20 |
木本Polyhedron aggregate | 1 | 4 | 0 | 12 | 4 | 15 | 5 | 3 | 6 | 4 | 1 | 2 | 3 | 5 | 11 | 76 |
硅化气孔Siliceous stomates | 0 | 0 | 2 | 0 | 10 | 3 | 2 | 1 | 1 | 3 | 13 | 1 | 1 | 16 | 7 | 60 |
果皮细胞Epidermal cell | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
石细胞Vessel | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
硅质突起Papillae | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 9 |
硅藻Diatom | 19 | 1 | 8 | 0 | 1 | 2 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 39 |
海绵骨针Sponge spicules | 1 | 0 | 2 | 1 | 4 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 0 | 0 | 0 | 15 |
总 计Amount | 533 | 500 | 500 | 504 | 540 | 546 | 516 | 521 | 541 | 563 | 507 | 574 | 517 | 580 | 579 | 8021 |
表1 城子崖遗址植硅体鉴定统计表
Tab.1 Phytolith morphotypes in Chengziya assemblage
编号Number | H15(1) | H15(2) | H28 | H402 | H530 | H585 | H594 | H606 | H622 | H624 | H628 | H629 | H631 | J6 | M24 | 总计Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
稻鱼鳞纹扇型Rice bulliform | 6 | 0 | 0 | 9 | 5 | 18 | 5 | 8 | 5 | 1 | 6 | 4 | 9 | 3 | 2 | 81 |
稻横排哑铃型Parallel bilobate from rice | 0 | 4 | 0 | 1 | 0 | 3 | 1 | 1 | 2 | 9 | 2 | 1 | 1 | 0 | 0 | 25 |
稻双峰型Double peaked phytolith from rice | 2 | 5 | 1 | 18 | 6 | 20 | 16 | 6 | 16 | 3 | 5 | 12 | 5 | 6 | 2 | 123 |
粟Ω型Ω-type husk phytolith from foxtail millet | 31 | 69 | 40 | 0 | 29 | 10 | 30 | 12 | 63 | 63 | 8 | 22 | 16 | 9 | 32 | 434 |
黍η型η-type husk phytolith from broomcorn millet | 35 | 50 | 25 | 4 | 56 | 35 | 73 | 33 | 103 | 60 | 13 | 25 | 40 | 4 | 81 | 637 |
竖排哑铃型Vertical bilobates | 2 | 9 | 16 | 0 | 27 | 7 | 13 | 4 | 4 | 47 | 19 | 19 | 34 | 51 | 8 | 260 |
稗子β型β-type from barnyard millet | 1 | 2 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 13 |
小麦帽型Hat phytolith from wheat | 2 | 1 | 5 | 0 | 5 | 2 | 0 | 0 | 1 | 0 | 3 | 3 | 2 | 0 | 3 | 27 |
小麦树枝型Dendritic phytolith from wheat | 0 | 0 | 0 | 0 | 3 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 10 |
芦苇扇型Fan-reed | 0 | 0 | 2 | 21 | 0 | 7 | 2 | 4 | 4 | 0 | 4 | 7 | 2 | 0 | 1 | 54 |
芦苇鞍型Saddle phytolith from reed | 1 | 0 | 0 | 0 | 7 | 0 | 1 | 5 | 2 | 1 | 5 | 2 | 0 | 1 | 0 | 25 |
短柄扇型Short handle Cuneiform bulliform | 1 | 1 | 5 | 10 | 0 | 7 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 31 |
长柄扇型Long handle Cuneiform bulliform | 17 | 5 | 4 | 56 | 1 | 49 | 11 | 27 | 20 | 2 | 35 | 27 | 13 | 9 | 23 | 299 |
竹亚科扇型Cuneiform Bambusoideae | 1 | 0 | 5 | 8 | 1 | 8 | 8 | 6 | 7 | 1 | 6 | 9 | 3 | 4 | 2 | 69 |
短尖型Unciform hair cell | 8 | 14 | 17 | 43 | 15 | 26 | 23 | 45 | 45 | 29 | 20 | 39 | 50 | 13 | 26 | 413 |
长尖型long point | 10 | 5 | 2 | 31 | 7 | 21 | 19 | 30 | 27 | 17 | 12 | 48 | 12 | 8 | 14 | 263 |
方型Trapeziform | 18 | 1 | 8 | 82 | 1 | 39 | 28 | 25 | 21 | 10 | 33 | 40 | 12 | 12 | 21 | 351 |
长方型Rectangle | 13 | 0 | 5 | 51 | 5 | 33 | 13 | 34 | 14 | 2 | 25 | 26 | 4 | 3 | 6 | 234 |
成组Group cuneiforms | 0 | 0 | 1 | 1 | 0 | 8 | 1 | 7 | 6 | 0 | 4 | 1 | 4 | 7 | 1 | 41 |
哑铃型Bilobate | 190 | 231 | 201 | 10 | 140 | 31 | 57 | 59 | 11 | 170 | 103 | 66 | 155 | 267 | 122 | 1813 |
十字型Cross | 4 | 2 | 7 | 3 | 23 | 2 | 6 | 2 | 1 | 4 | 3 | 0 | 7 | 13 | 6 | 83 |
多铃型Cylindrical polylobate | 5 | 12 | 6 | 0 | 13 | 2 | 4 | 2 | 0 | 7 | 6 | 3 | 1 | 4 | 3 | 68 |
平滑棒型Elongate psilate | 97 | 53 | 65 | 66 | 75 | 68 | 74 | 83 | 62 | 53 | 85 | 82 | 64 | 16 | 98 | 1041 |
刺棒型Elongate echinate | 31 | 18 | 28 | 58 | 38 | 68 | 82 | 65 | 65 | 37 | 65 | 76 | 60 | 14 | 59 | 764 |
画眉草亚科短鞍型Short saddle from Subfam. Eragrostoideae pilger | 4 | 1 | 3 | 1 | 3 | 3 | 0 | 5 | 1 | 1 | 2 | 2 | 0 | 1 | 4 | 31 |
中鞍型Middle-saddle phytolith | 5 | 0 | 4 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 14 |
竹亚科长鞍型Long saddle phytoliths of Bambusoideae | 8 | 3 | 7 | 3 | 2 | 3 | 4 | 3 | 0 | 1 | 6 | 2 | 2 | 2 | 2 | 48 |
尖顶帽型Tower | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 6 |
平顶帽型Rondel | 4 | 0 | 0 | 1 | 1 | 4 | 1 | 2 | 2 | 0 | 1 | 6 | 3 | 0 | 3 | 28 |
莎草科多边帽型Sedge conial type | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 10 |
导管型Cylindric sulcate tracheid | 5 | 1 | 9 | 0 | 2 | 4 | 7 | 5 | 3 | 4 | 1 | 8 | 3 | 5 | 8 | 65 |
毛发型Unciform hair | 0 | 0 | 5 | 1 | 3 | 1 | 0 | 0 | 0 | 4 | 0 | 1 | 0 | 4 | 5 | 24 |
树枝型Dentritic | 2 | 4 | 2 | 0 | 0 | 2 | 0 | 2 | 4 | 0 | 0 | 2 | 0 | 2 | 2 | 22 |
齿型Trapeziform sinuate | 5 | 0 | 0 | 1 | 1 | 5 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 5 | 25 |
蕨科三棱柱型Pteridium aquilinum Kuhn var. japonicum Nakai | 2 | 0 | 1 | 5 | 26 | 22 | 9 | 6 | 14 | 3 | 10 | 7 | 1 | 2 | 11 | 119 |
禾本科Gramineae | 0 | 0 | 0 | 3 | 3 | 1 | 5 | 16 | 3 | 7 | 1 | 6 | 4 | 49 | 0 | 98 |
黍亚科Panicoideae | 0 | 0 | 1 | 3 | 13 | 7 | 5 | 7 | 12 | 9 | 3 | 6 | 2 | 2 | 1 | 71 |
早熟禾亚科Pooideae | 0 | 0 | 7 | 1 | 4 | 0 | 3 | 3 | 7 | 6 | 2 | 5 | 3 | 34 | 0 | 75 |
芒属Miscanthus species | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 3 | 2 | 0 | 3 | 0 | 6 | 1 | 20 |
木本Polyhedron aggregate | 1 | 4 | 0 | 12 | 4 | 15 | 5 | 3 | 6 | 4 | 1 | 2 | 3 | 5 | 11 | 76 |
硅化气孔Siliceous stomates | 0 | 0 | 2 | 0 | 10 | 3 | 2 | 1 | 1 | 3 | 13 | 1 | 1 | 16 | 7 | 60 |
果皮细胞Epidermal cell | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
石细胞Vessel | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
硅质突起Papillae | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 9 |
硅藻Diatom | 19 | 1 | 8 | 0 | 1 | 2 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 39 |
海绵骨针Sponge spicules | 1 | 0 | 2 | 1 | 4 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 0 | 0 | 0 | 15 |
总 计Amount | 533 | 500 | 500 | 504 | 540 | 546 | 516 | 521 | 541 | 563 | 507 | 574 | 517 | 580 | 579 | 8021 |
图2 遗址农作物植硅体图1. 稻横排哑铃型Parallel bilobate from rice;2.竖排哑铃型Vertical bilobates;3.黍η型η-type husk phytolith from broomcorn millet;4.稻扇型Rice bulliform;5.粟Ω型 Ω-type husk phytolith from foxtail millet;6.竖排十字型Vertical crosses;7.小麦树状型Dendritic phytolith from wheat;8.稻双峰型 Double peaked phytolith from rice;9.稗β型β-type from barnyard millet
Fig.2 Picture of crops phytolith
图3 遗址非农作物植硅体(1) 1.毛细胞基部Hair cell base;2.多铃型(多裂柱型)Cylindrical polylobate;3.齿型(波状梯型)Trapeziform sinuate;4.十字型Cross;5.硅化气孔Siliceous stomates;6.芦苇扇型Fan-reed;7.哑铃型(双裂片型)Bilobate
Fig.3 The plate of phytolith morphotypes from non-crops (1)
图4 遗址非农作物植硅体 (2) 1.褶皱球型(球粒型)Globular granulate;2.表皮细胞Epidermal cell;3.木本植物Polyhedron aggregate;4.扇型(楔型泡状细胞)Cuneiform bulliform;5.长方型Rectangle;6.方型(梯型短细胞)Trapeziform;7.短尖型(钩状毛细胞)Unciform hair cell;8.齿型(多裂梯型)Trapeziform polylobate;9.禾草 Phytolith in grasses;10.成组扇型Group cuneiforms;11.导管型Cylindric sulcate tracheid;12.角状Corniculate;13.平滑棒型Elongate psilate;14.刺棒型Elongate echinate;15.蕨科三棱柱型Pteridium aquilinem Kuhn var. japonicum Nakai;16.长空尖型Large prickle phytolith;17.气孔Stomates;18.毛细胞基部Hair base
Fig.4 The plate of phytolith morphotypes from non-crops (2)
[1] | 科林·伦福儒, 保罗·巴恩. 考古学:理论、方法与实践(第六版)[M].译者:陈淳. 上海: 上海古籍出版社, 2015, 247-259 |
[2] | 《考古学概论》编写组. 考古学概论[M]. 北京: 高等教育出版社, 2015, 300 |
[3] | 吴文婉. 中国北方地区裴李岗时代生业经济研究[D]. 济南: 山东大学, 2014 |
[4] | 靳桂云, 郭荣臻, 魏娜. 海岱地区史前稻遗存研究[J]. 东南文化, 2017, 5: 60-71 |
[5] | 张光直, 徐苹芳, 严文明, 等. 中国文明的形成[M]. 北京: 新世界出版社, 2004, 97-236 |
[6] | 靳桂云, 赵敏, 孙淮生, 等. 山东荏平龙山文化遗址植物考古调查[A]. 见:山东大学东方考古研究中心(编).东方考古(第6集)[C]. 北京: 科学出版社, 2009, 317-320 |
[7] | 赵志军. 两城镇与教场铺龙山时代农业生产特点的对比分析[A]. 见:山东大学东方考古研究中心(编).东方考古(第1集)[C]. 北京: 科学出版社, 2004, 210-224 |
[8] | 靳桂云, 王传明, 张克思, 等. 淄博市房家龙山文化遗址植物考古报告[A]. 见:山东省文物考古研究所(编).海岱考古(第四辑)[C]. 北京: 科学出版社, 2011, 66-71 |
[9] | 靳桂云, 吕厚远, 魏成敏. 山东临淄田旺龙山文化遗址植物硅酸体研究[J]. 考古, 1999, 2: 82-87 |
[10] | 宋吉香. 山东桐林遗址出土植物遗存分析[D]. 北京: 中国社会科学院研究生院, 2007, 43-47 |
[11] | 吴文婉, 郝导华, 靳桂云. 济南彭家庄遗址浮选结果初步分析[A]. 见:山东大学东方考古研究中心(编).东方考古(第7集)[C]. 北京: 科学出版社, 2010, 358-369 |
[12] | 魏娜, 袁广阔, 王涛, 等. 山东章丘宁家埠遗址(2016)炭化植物遗存分析[J]. 农业考古, 2018, 1: 16-24 |
[13] | 张飞, 王青, 陈章龙, 等. 山东章丘黄桑院遗址2012年度炭化植物遗存分析[A]. 见:山东大学东方考古研究中心(编). 东方考古(第15集)[C]. 北京: 科学出版社, 2019, 174-186 |
[14] | 吴文婉, 姜仕炜, 许晶晶, 等. 邹平丁公遗址(2014)龙山文化植物大遗存的初步分析[J]. 中国农史, 2018, 3: 14-20 |
[15] | 柏哲人. 丁公遗址龙山文化早期壕沟(G114)功能的地学考古研究[D]. 济南: 山东大学, 2019, 26-28 |
[16] | 邢雪荣, 张蕾. 植物的硅素营养研究综述[J]. 植物学通报, 1998, 2: 33-40 |
[17] | 王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1992, (1-10): 43-44 |
[18] | 应雨骐, 项婷婷, 李永夫, 等. 中国亚热带重要树种植硅体碳封存潜力估测[J]. 自然资源学报, 2015, 1: 133-140 |
[19] | 李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学发展, 2013, 12: 1287-1295 |
[20] | 陈报章. 植物硅酸体分析在农业考古中的应用[J]. 农业考古, 1995, 3: 24-27 |
[21] | 吕厚远, 王永吉. 晚更新世以来洛川黑木沟黄土地层中植物硅酸体研究及古植被演替[J]. 第四纪研究, 1991, 1: 72-84 |
[22] | 介冬梅, 刘红梅, 葛勇, 等. 长白山泥炭湿地主要植物植硅体形态特征研究[J]. 第四纪研究, 2011, 1: 163-170 |
[23] | 朱超, 孙波. 章丘城子崖周边区域考古调查报告(第一阶段)[A]. 见:山东省文物考古研究所(编).海岱考古(第六辑)[C]. 北京: 科学出版社, 2013, 151-209 |
[24] | 张学海. 试论山东地区的龙山文化城[J]. 文物, 1996, 12: 40-52 |
[25] | 山东省文物考古研究所, 北京大学考古文博学院. 考古圣地结新果——城子崖遗址考古在中华文明探源工程中的最新进展[N]. 中国文物报,2014-06-20(006) |
[26] | 栾丰实. 试析海岱龙山文化东、西部遗址分布的区域差异[A]. 见:山东省文物考古研究所(编).海岱考古(第九辑)[C]. 北京: 科学出版社, 2016, 401-411 |
[27] |
Lu HY, Wu NQ, Yang XD, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions[J]. Quaternary Science Reviews, 2006, 25(9): 945-959
doi: 10.1016/j.quascirev.2005.07.014 URL |
[28] | Piperno DR. Phytoliths: a comprehensive guide for archaeologists and paleoecologists[M]. California: AltaMira, 2006, 238 |
[29] | Renfrew J. Palaeoethnobotany: The Prehistoric Food Plants of the Near East and Europe[M]. Edinburgh: Columbia University Press, 1973, 9-15 |
[30] |
Lu HY, Zhang JP, Wu NQ, et al. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum)[J]. Plos One, 2009, 4 (2): e4448
doi: 10.1371/journal.pone.0004448 URL |
[31] |
Zhang JP, Lu HY, Wu Naiqin, et al. Phytoliths analysis for differentiating between Foxtail Millet (Setaria italica) and Green Foxtail (Setaria viridis)[J]. Plos One, 2012, 6 (5): e19726
doi: 10.1371/journal.pone.0019726 URL |
[32] | 藤原宏志. プラント·オパール分析法の基礎研究(1)一数種イネ科植物の硅酸体標本と定量分析[J]. 考古学と自然科学, 1976, 9: 15-29 |
[33] | 吕厚远, 吴乃琴, 王永吉. 稻扇型硅酸体的鉴定及在考古学中的应用[J]. 考古, 1996, 4: 82-86 |
[34] |
Lu HY, Liu ZX, Wu NQ, et al. Rice domestication and climatic change: Phytolith evidence from East China[J]. Boreas, 2002, 31(4): 378-385
doi: 10.1111/j.1502-3885.2002.tb01081.x URL |
[35] | 王灿, 吕厚远. 水稻扇型植硅体研究进展及相关问题[J]. 第四纪研究, 2012(2): 269-281 |
[36] | 顾海滨. 普通野生稻和栽培稻双峰硅质体的统计学分析[A]. 见:山东大学东方考古研究中心(编).东方考古(第7集)[C]. 北京: 科学出版社, 2011: 333-340 |
[37] | 姚政权, 吴妍, 王昌燧, 等. 河南新密市新砦遗址的植硅石分析[J]. 考古, 2007, 3: 90-96 |
[38] | 徐中根. 稻属植物微形态特征的比较分析[D]. 扬州: 扬州大学, 2010, 16-46 |
[39] |
Ball TB, Gardner JS, Anderson N. Identifying inflorescence phytoliths from selected species of wheat (Triticum nonococcum, T. dicoccon, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum (Gramineae) )[J]. American Journal of Botany, 1999, 86(11): 1615-1623
pmid: 10562252 |
[40] |
Ball TB, Ehlers R, Standing MD. Review of typologic and morphometric analysis of phytoliths produced by wheat and barley[J]. Breeding Science, 2009, 59(5): 505-512
doi: 10.1270/jsbbs.59.505 URL |
[41] | 吴妍. 植硅体分析方法的应用与改进[D]. 合肥: 中国科学技术大学, 2008, 25-27 |
[42] | 陈辉, 林立, 石元昌, 等. 小麦中植硅体形态的初步研究与分类[A]. 见:山东大学东方考古研究中心(编).东方考古(第7集)[C]. 北京: 科学出版社, 2010, 341-350 |
[43] |
Crawford GW. Advances in Understanding Early Agriculture in Japan[J]. Current Anthropology, 2011, 52(S4): S331-S345
doi: 10.1086/658369 URL |
[44] |
De Wet JMJ, Rao KP, Mengesha MH, et al. Domestication of Sawa millet (Echinochloa colona)[J]. Economic Botany, 1983, 37(3): 283-291
doi: 10.1007/BF02858883 URL |
[45] | Harlan JR. Wild-grass seed harvesting in the Sahara and Sub-Sahara of Africa[J]. Foraging & Farming the Evolution of Plant Exploitation, 1989, 2: 69-74 |
[46] | Yang XY, Fuller DQ, Huan XJ, et al. Barnyard grasses were processed with rice around 10000 years ago[J]. Science Reports, 2015, 5(5): 16251 |
[47] | Ge Y, Lu HY, Zhang JP, et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications[J]. Archaeological and Anthropological Sciences, 2016, 10.1007/s12520-016-0341-0 |
[48] |
Li ZM, Song ZL, Li BL. The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China[J]. Applied Geochemistry, 2013, 37: 117-124
doi: 10.1016/j.apgeochem.2013.07.012 URL |
[49] | 史吉晨, 介冬梅, 刘利丹, 等. 东北地区芦苇植硅体分形特征初步研究[J]. 第四纪研究, 2017, 6: 1444-1455 |
[50] |
Out WA, Madella M. Erratum to: Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italic leaves[J]. Archaeological and Anthropological Sciences, 2017, 9(2): 293
doi: 10.1007/s12520-015-0265-0 |
[51] | 李泉, 徐德克, 吕厚远. 竹亚科植硅体形态学研究及其生态学意义[J]. 第四纪研究, 2005, 6: 777-784 |
[52] | 徐德克, 李泉, 吕厚远. 棕榈科植硅体形态分析及其环境意义[J]. 第四纪研究, 2005, 6: 785-792 |
[53] | 胡木兰, 左丽, 介冬梅, 等. 东北地区草本植物和木本植物植硅体的形态特征鉴别分析[J]. 微体古生物学报, 2018, 2: 122-139 |
[54] |
Madella M, Alexandre A, Ball TB. International Code for Phytolith Nomenclature 1.0[J]. Annals of Botany, 2005, 96(2): 253-260
doi: 10.1093/aob/mci172 pmid: 15944178 |
[55] | 李泉, 吕厚远, 王伟铭. 国际植硅体命名法规(International Code for Phytolith Nomencla 1.0)的介绍与讨论[J]. 古生物学报, 2009, 48(1): 131-138 |
[56] | Ryan P. Phytolith studies in Archaeology[A]. In: Smith C(Ed.). Encyclopedia of Global Archaeology[M]. New York: Springer, 2014, 5920-5931 |
[57] |
Lu HY, Zhang JP, Liu KB, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago[J]. PNAS, 2009, 106 (18): 7367-7372
doi: 10.1073/pnas.0900158106 pmid: 19383791 |
[58] | 黄其煦. “灰像法”在考古学中的应用[J]. 考古, 1982, 4: 418-420 |
[59] | 中国社会科学院考古研究所河南一队. 1979年裴李岗遗址发掘报告[J]. 考古学报, 1984, 1: 23-51 |
[60] | 赵志军. 从兴隆沟遗址浮选结果谈中国北方旱作农业起源问题[A]. 见:南京师范大学文博系(编).东亚古物(A卷)[C]. 北京: 文物出版社, 2004, 188-199 |
[61] | 赵珍珍. 淮河中游龙山时代农业研究[D]. 济南: 山东大学, 2018, 37-45+51-55 |
[62] | 邓振华, 秦岭. 中原龙山时代农业结构的比较研究[J]. 华夏考古, 2017, 3: 98-108 |
[63] | 许清海, 王子惠, 吴忱, 等. 30 ka B.P.来鲁北平原的植被与环境[A]. 见:梁名胜,张吉林(编).中国海陆第四纪对比研究[C]. 北京: 科学出版社, 1991, 188-199 |
[64] | 卞学昌. 山东省全新世古气候变化序列及其与史前文化发展阶段的相关研究[D]. 济南: 山东师范大学, 2004, 10-18 |
[65] | 山东省文物考古研究所, 北京大学考古文博学院. 临淄桐林遗址聚落形态研究考古报告[A]. 见:山东省文物考古研究所(编).海岱考古(第五辑)[C]. 北京: 科学出版社, 2012, 139-168 |
[66] | 刘莉. 中国新石器时代——迈向早期国家之路[M].译者:陈星灿,乔玉,马萧林,等. 北京: 文物出版社, 2007: 61-65+185-188 |
[67] | 吴文祥, 房茜, 葛全胜. 中国龙山时代(5.0-4.0 kaBP)气候变化[J]. 海洋地质与第四纪地质, 2013, 6: 129-137 |
[68] | Crawford GW, 陈雪香, 栾丰实, 等. 山东济南长清月庄遗址植物遗存的初步分析[J]. 江汉考古, 2013, 2: 107-116 |
[69] |
Jin GY, Wu WW, Zhang KS, et al. 8000-year old rice remains from the north edge of the Shandong Highlands, East China[J]. Journal of Archaeological Science, 2014, 51: 34-42
doi: 10.1016/j.jas.2013.01.007 URL |
[70] | 靳桂云. 中国早期小麦的考古发现与研究[J]. 农业考古, 2007, 4: 11-20 |
[71] | 赵志军. 欧亚草原是史前东西文化交流的主干道——考古出土小麦遗存研究[A]. 见:马永真,明锐,胡益华,等(编).论草原文化(第九辑)[C]. 呼和浩特: 内蒙古教育出版社, 2012, 36-49 |
[72] | 赵志军. 小麦传入中国的研究——植物考古资料[J]. 南方文物, 2015, 3: 44-52 |
[73] | 李水城, 王辉. 东灰山遗址炭化小麦再议[A]. 见:北京大学考古文博学院,北京大学中国考古学研究中心(编).考古学研究(十)[C]. 北京: 科学出版社, 2016, 399-405 |
[74] | 靳桂云, 王海玉, 燕生东, 等. 山东胶州赵家庄遗址龙山文化炭化植物遗存研究[A]. 见:中国社会科学院考古研究所科技考古中心(编).科技考古(第三辑)[C]. 北京: 科学出版社, 2011, 36-53 |
[75] |
Long TW, Leipe C, Jin GY, et al. The early history of wheat in China from 14C dating and Bayesian chronological modelling[J]. Nature Plants, 2018, 4: 272-279
doi: 10.1038/s41477-018-0141-x URL |
[76] | 杨春, 梁会丽, 孙东文, 等. 吉林省德惠市李春江遗址浮选结果分析报告[J]. 北方文物, 2010, 4: 52-53 |
[77] | 张健平, 吕厚远, 吴乃琴, 等. 关中盆地6000-2100 cal.aB.P.期间黍、粟农业的植硅体证据[J]. 第四纪研究, 2010, 2: 287-297 |
[78] | 郭媛媛, 莫多闻, 毛龙江, 等. 山东北部地区聚落遗址时空分布与环境演变的关系[J]. 地理学报, 2013, 4: 559-570 |
[79] | 张锡梅, 山仑. 土壤干旱对糜、谷生理特性及生产力的影响[J]. 生态学杂志, 1986, 2: 15-18 |
[80] | 刘长江, 靳桂云, 孔昭宸. 植物考古:种子和果实研究[M]. 北京: 科学出版社, 2008, 162-171 |
[81] | 周新郢, 李小强, 赵克良, 等. 陇东地区新石器时代的早期农业及环境效应[J]. 科学通报, 2011, 4: 318-326 |
[82] | 刘兴林. 农田杂草考古研究的意义[J]. 古今农业, 2016, 2: 10-16 |
[83] |
Harvey EL, Fuller DQ. Investigating crop processing using phytolith analysis: theexample of rice and millets[J]. Journal of Archaeological Science, 2005, 32(5): 739-752
doi: 10.1016/j.jas.2004.12.010 URL |
[84] |
Bates J, Singh RN, Petrie CA. Exploring Indus crop processing: combining phytolith and macrobotanical analyses to consider the organization of agriculture in northwest India c. 3200-1500BC[J]. Vegetation History and Archaeobotany, 2017, 26(1): 25-41
doi: 10.1007/s00334-016-0576-9 URL |
[85] | Weisskopf A, Qin L, Fuller DQ. The interplay of millets and rice in Neolithic central China: Integrating phytoliths into the archaeobotany of Baligang[J]. Archaeological Research in Asia, 2015(4): 36-45 |
[86] | Bates J. Social organization and change in the Indus Civilization; phytolith analysis of crop processing aims at Masudpur VII[J]. Bioscience Horizons, 2011, 4: 1-12 |
[87] | Madella M, Fuller DQ. Palaeoecology and the Harappan Civilisation of South Asia: a reconsideration[J]. Quaternary Science Reviews, 2006, 1283-1301 |
[88] | 陈星灿. 灰坑的民族考古学观察——石璋如晋绥纪行的再发现[N]. 中国文物报,2002-3-1(7) |
[89] | 葛利花, 王振祥, 靳桂云. 植硅体分析与稻作农业[J]. 农业考古, 2019(4): 13-22 |
[90] | 王滨. “中国四大名小米”原产地述略[J]. 黑龙江粮食, 2015(7): 45-48 |
[91] | 代惠萍. 糜子植株衰老与活性氧代谢研究[D]. 咸阳: 西北农林科技大学, 2008: 2 |
[92] | 王晓兰. 黍子高产栽培技术[J]. 农业技术与装备, 2010(9): 54-55 |
[93] | 林伟建. 济南培育出“史上最牛小麦品种”[J]. 农家参谋(种业大观), 2011(1): 28 |
[94] | 童涵, 胡文芳, 马根众. 山东水稻主要生产环节机械化现状与发展建议[J]. 山东农机化, 2001(18): 9 |
[95] | 袁青, 吕亮, 刘帅. 明水香稻的生态栽培[J]. 特种经济动植物, 2010(4): 36-37 |
[96] | 周家瑜, 李桂生, 靳维标. 山东稻种资源的初步研究[J]. 山东农业科学, 1987(5): 22-24 |
[97] | 张成才. 稗子的栽培与利用技术[J]. 养殖与饲料, 2017(1): 60-61 |
[98] | 王绍武, 闻新宇, 黄建斌. 五帝时代(距今6-4千年)中国的气候[J]. 中国历史地理论丛, 2011(2): 5-13 |
[99] | 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 中国科学, 1973(2): 168-189 |
[100] | 裴盛基, 淮虎银. 民族植物学[M]. 上海: 上海科学技术出版社, 2007: 82-84 |
[101] | 葛勇. 中国常见现代植物植硅体形态研究及应用[D]. 北京: 中国科学院大学, 2016: 93-94+199 |
[102] |
Barboni D, Bonnefille R, Alexandre A, et al. Phytoliths as palaeoenvironmental indicators, West Side Middle Awash Valley, Ethiopia[J]. Palaegeography Palaeoclimatology Palaeoecology, 1999, 152: 87-100
doi: 10.1016/S0031-0182(99)00045-0 URL |
[103] |
Abrantes F. A 340,000 year continental climate record from tropical Africa news from opal phytoliths from the equatorial Atlantic[J]. Earth and Planetary Science Letters, 2003, 209: 165-179
doi: 10.1016/S0012-821X(03)00039-6 URL |
[104] | 麦戈文, 方辉, 栾丰实, 等. 山东日照两城镇遗址龙山文化酒遗存的化学分析——兼谈酒在史前时期的文化意义[J]. 考古, 2005(3): 73-85 |
[105] | Motuzaite-Matuzeviciute G, Hunt HV, Jones MK. Experimental approaches to understanding variation in grain size in Panicum miliaceum (broomcorn millet) and its relevance for interpreting archaeobotanical assemblages[J]. Vegetation History and Archaeobotany, 2001(1): 69-77 |
[106] | Liu BH, Fujita T, Yan ZH, et al. QTL mapping of domestication -related traits in soybean (Glycine max)[J]. Annals Botany, 2007(5): 1027-1038 |
[107] | 燕生东. 关于地层堆积和灰坑的几个问题[J]. 华夏考古, 2008(1): 128-133 |
[108] |
Whitlock C, Millspaugh SH. Testing assumptions of fire history studies: an examination of modern charcoal accumulation in Yellowstone National Park[J]. The Holocene, 1996, 6(1): 7-15
doi: 10.1177/095968369600600102 URL |
[109] | Smol JP, Last WM, Birks JB. Tracking environmental change using lake sediments, volume 3 terrestrial, algal, and siliceous indicators[M]. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001: 75-97 |
[110] | 李成, 李戈, 李仁成, 等. 植物燃烧微炭屑与植硅体的比值研究[J]. 微体古生物学报, 2019, 36(1): 79-86 |
[111] | 张健平, 吕厚远. 现代植物炭屑形态的初步分析及其古环境意义[J]. 第四纪研究, 2006(5): 857-863 |
[112] | 李宜垠, 侯树芳, 赵鹏飞. 微炭屑的几种统计方法比较及其对人类活动的指示意义[J]. 第四纪研究, 2010(2): 356-363 |
[113] | Umbanhowar Jr CE, Mcgrath MJ. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses[J]. The Holocene, 1998(3): 341-346 |
[114] | 山东省文物考古研究院, 北京大学考古文博学院. 济南市章丘区城子崖遗址2013-2015年发掘简报[J]. 考古, 2019(4): 3-24 |
[115] | 中华人民共和国商业部土产废品局, 中国科学院植物研究所. 中国经济植物志上册[M]. 北京: 科学出版社, 2012: 443-444 |
[116] | Wu Y, Guo XN, Wang WL, et al. Red pigments and Boraginaceae leaves in mortuary ritual of late Neolithic China: A case study of Shengedaliang site[J]. Microscopy Research &Technique, 2017, 80(2): 231-238 |
[117] | 邵望平. 远古文明的火花—陶尊上的文字[J]. 文物, 1978(9): 74-76 |
[118] | 刘莉, 陈星灿. 龙山文化的酋邦与聚落形态[J]. 华夏考古, 1998(1): 89-113 |
[119] | 吴文祥, 葛全胜. 4.5-4. 0 kaBP气候变化、人口增长、条件限制与黄河中下游地区龙山酋邦社会产生[J]. 第四纪研究, 2014(1): 253-265 |
[1] | 朱语桐, 张国文, 郑万泉, 张燕. 四川宁南钟家梁子遗址人骨的稳定同位素[J]. 人类学学报, 2024, 43(05): 767-779. |
[2] | 吴妍, 谢光茂, 赵克良, 蒙长旺, 陈冠翰, 汪静怡, 林强. 广西崇左江西岸遗址人类的生存方式[J]. 人类学学报, 2024, 43(03): 380-391. |
[3] | 赵东月, 吕正, 张泽涛, 刘波, 凌雪, 万杨, 杨帆. 通过稳定同位素分析云南大阴洞遗址先民的生业经济方式[J]. 人类学学报, 2022, 41(02): 295-307. |
[4] | 张全超, 孙语泽, 侯亮亮, 吉平, 朱永刚. 哈民忙哈遗址人和动物骨骼的C、N稳定同位素分析[J]. 人类学学报, 2022, 41(02): 261-273. |
[5] | 陶大卫, 刘雪玲, 肖艺琦, 陈朝云. 河南鹿台遗址炭化植物遗存揭示的新石器时代晚期的人类生计活动[J]. 人类学学报, 2022, 41(01): 73-84. |
[6] | 周亚威;刘明明;冯春艳;韩长松. 徐堡遗址龙山文化居民颅骨的形态学研究[J]. 人类学学报, 2018, 37(01): 18-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||