收稿日期: 2017-08-01
修回日期: 2018-02-22
网络出版日期: 2020-09-10
基金资助
国家自然科学基金项目(61673319);国家自然科学基金项目(61363065);陕西省自然科学基金项目(2018JM6061);陕西省自然科学基金项目(2014JM8358);研究生自主创新项目(YZZ17181)
Skull sex identification using improved convolution neural network and least squares method
Received date: 2017-08-01
Revised date: 2018-02-22
Online published: 2020-09-10
颅骨性别鉴定在法医学和颅骨面貌复原等领域具有重要研究意义和应用价值,针对传统颅骨性别鉴定需要专家参与且主观性强、计算机辅助方法需要人工标定特征点等问题,本文提出了结合改进卷积神经网络和最小二乘法的颅骨性别鉴定方法。首先,获取三维颅骨模型多角度颅骨图像,利用改进的卷积神经网络计算每个样本的每张图像属于男性和女性的概率;其次,基于概率均值采用最小二乘法计算每张图像对性别鉴定的权重;最后,利用上述步骤得到的最优参数构造决策函数,通过决策值完成颅骨性别鉴定。本文方法抛弃了繁琐的手动测量,对完整颅骨的性别鉴定正确率高达94.4%,对不完整颅骨的性别鉴定正确率高达87.5%,能够获得较好的颅骨性别鉴定性能。
杨稳 , 刘晓宁 , 刘雄乐 , 朱丽品 . 结合改进卷积神经网络和最小二乘法的颅骨性别鉴定[J]. 人类学学报, 2019 , 38(02) : 265 -275 . DOI: 10.16359/j.cnki.cn11-1963/q.2018.0030
Skull sex identification has significant research and applied value in forensic anthropology and skull reconstruction. The traditional skull sex determination methods need expert participation and to some extent, is not objective, because computer-aided methods require to marking landmarks the feature points manually. We present a novel sex determination method based on improved Convolution Neural Network and Least Square. Firstly, obtain multi-angle skull images of three-dimensional skull model, and calculate the probability of each image belongs to male or female. Secondly, the weight of each image is calculated using the Least Squares method based on the probability mean. Lastly, the sex determination function is constructed by using the optimal parameters obtained through the above steps. This method does not need to mark the feature points or do the measurement. Experiments show that the proposed method can get quite a reliable performance with an accuracy of 94.4% for the the complete skull and 87.5% for the incomplete skull.
[1] | Guyomarc’H P, Bruzek J. Accuracy and reliability in sex determination from skulls: a comparison of Fordisc? 3.0 and the discriminant function analysis[J]. Forensic Science International, 2011, 208(1): 180.e1-180.e6 |
[2] | Stewart TD. Medico-legal aspects of the skeleton;sex,age,race and stature[J]. American Journal of Physical Anthropology, 1948,6(3):315-321 |
[3] | Iscan MY, Maryna S. The Human Skeleton in Forensic Medicine[M]. Royal Society of Medicine Press, 2013, 56(2): A-48 |
[4] | Keen JA. A study of the differences between male and female skull[J]. American Journal of Physical Anthropology, 1997,116(2):118-124 |
[5] | 张亚盟, 魏偏偏, 吴秀杰. 现代人头骨断面轮廓的性别鉴定——基于几何形态测量的研究[J]. 人类学学报, 2016,35(2):172-180 |
[6] | Ogawa Y, Imaizumi K, Miyasaka S, et al. Discriminant functions for sex estimation ofmodern Japanese skulls[J]. Journal of Forensic & Legal Medicine, 2013,20(4):234-238 |
[7] | Kanchan J, Gupta A, Krishan K. Estimation of sex from mastoid trsiangle-A craniometric analysis[J]. Journal of Forensic & Legal Medicine, 2013,20(7):855-860 |
[8] | 税午阳, 殷荣超, 周明全, 等. 中国汉族人颅骨数字模型的性别判别方法[J]. 中国法医学杂志, 2013,286(6):461-464 |
[9] | Twisha S, Patel MN, Nath S, et al. Determination of sex using cephalo-facial dimensions by discriminant function and logistic regression equations[J]. Egyptian Journal of Forensic Sciences, 2016,6(2):114-119 |
[10] | Santos F, Guyomarc’h P, Bruzek J. Comparison of linear discriminant analysis, logistic regression, support vector machines[J]. Forensic Sci Int, 2014, 245(204): el-e8 |
[11] | Alunni V, Jardin PD, Nogueira L, et al. Comparing discriminant analysis and neural network for the determination of sex using femur head measurements[J]. Forensic Sci Int, 2015,253:81-87 |
[12] | Afrianty I, Nasien D, Kadir MRA, et al. Back-Propagation neural network for gender determination in forensic anthropology[J]. Studies in Computational Intelligence, 2015,575:255-281 |
[13] | Luo L, Wang M, Tian Y, et al. Automatic Sex Determination of Skulls Based on a Statistical Shape Model[J], Computational and mathematical methods in medicine, 2013,2013(1):251628 |
[14] | Janarthanan R, Asha J. Supraorbital Margins for Identification of Sexual Dimorphism and Age Detection from Human Skull Using Wavelets[J]. Asian Journal of Applied Science and Technology, 2017,1(2):279-282 |
[15] | 任荣荣, 周明全, 耿国华, 等. 三维颅骨形态量化表示与非线性性别判定[J]. 北京师范大学学报(自然科学版), 2017,53(1):19-23 |
[16] | Pham DV. Online handwriting recognition using multi-convolution neural network[J]. International Conference on Simulated Evolution & Learning, 2012,7673:310-319 |
[17] | Lawrence S, Giles CL, Tsoi AC, et al. Face recognition: a convolutional neural-network approach[J]. IEEE Transactions on Neural Network, 1997,8(1):98-113 |
[18] | Hu B, Lu Z, Li H, et al. Convolutional Neural Network Architectures for Matching Natural Language Sentences[J]. International Conference on Neural Information Processing Systems, 2014,3:2042-2050 |
[19] | Bouvrie J. Notes on Convolutional Neural Networks[J]. Neural Nets, 2006: 38-44 |
[20] | Herreragomez A, Porter RM. Mixed linear-nonlinear least squares regression[J]. Mathematics, 2017: 49-65 |
[21] | Barham RH, Wanzer D. An Algorithm for Least Squares Estimation of Nonlinear Parameters When Some of the Parameters are linear[J]. Technometrics, 1972,14(3):757-766 |
/
〈 | 〉 |