中国古人类颅容量的推算方法比较

  • 吴秀杰 ,
  • 张伟
展开
  • 1. 中国科学院脊椎动物演化与人类起源重点实验室,中国科学院古脊椎动物与古人类研究所,北京 100044
    2. 中国科学院生物演化与环境卓越创新中心, 北京 100044
吴秀杰, 中国科学院古脊椎动物与古人类研究所研究员, Email: wuxiujie@ivpp.ac.cn

收稿日期: 2019-06-04

  修回日期: 2019-07-03

  网络出版日期: 2020-09-10

基金资助

中国科学院战略性先导科技专项(XDB26000000);中国科学院创新交叉团队(2016);国家自然科学基金项目(41672020);国家自然科学基金项目(41630102)

Methods for estimating cranial capacity from Chinese human fossils

  • Xiujie WU ,
  • Wei ZHANG
Expand
  • 1. Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044
    2. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044

Received date: 2019-06-04

  Revised date: 2019-07-03

  Online published: 2020-09-10

摘要

古人类的体质特征和现代人不同,依据现代人头骨测量数据计算出来的公式往往不适于古人类颅容量的推算。获取古人类颅容量最准确的方法是复原出其内部的颅内模;然而,由于颅内模的复原工艺复杂,加上古人类头骨化石数量稀少且多数残破,如何准确地推算其颅容量,成为古人学者研究的难点问题之一。本文通过对中国境内发现的不同演化阶段的古人类颅容量推算方法的对比和验证,试图找出推算古人类颅容量的最适合的公式法。研究结果显示:1)早期现代人解剖特征同现代人基本接近,依据现代人头骨推算出来的回归方程可以用来推算其颅容量;2)直立人头骨厚重、脑颅低矮,体质特征不同于现代人,其颅容量的推算不能使用现代人公式法。依据本文中国直立人头骨测量数据推导出来的回程方程(C=-1301.944+60606L+0.718b+9.936h)适合其颅容量的推算。采用此直立人公式法,推算出蓝田直立人的颅容量为918 mL;3)古老型智人的体质特征位于直立人和现代人之间,对其颅容量的推算不能一概而论:体质特征接近直立人的,如大荔人、华龙洞6号,可采用直立人公式法;体质特征接近早期现代人的,如许昌1号,可采用现代人公式法;体质特征位于直立人和早期现代人中间位置的,如马坝人、金牛山人,其颅容量约等于采用现代人公式法和采用直立人公式法获得的颅容量的平均值。

本文引用格式

吴秀杰 , 张伟 . 中国古人类颅容量的推算方法比较[J]. 人类学学报, 2019 , 38(04) : 513 -524 . DOI: 10.16359/j.cnki.cn11-1963/q.2019.0061

Abstract

Ancient human skulls exhibit anatomical and morphological differences from modern skulls that depend on the evolutionary stage of the fossil under study. Thus, formulae derived using modern human skull measurements are mostly unsuitable for calculating cranial capacities from ancient human fossils. The most accurate way to estimate cranial capacities of human fossil skulls is through internal cranial vault reconstructions; However, due to the complex reconstruction process of endocranial casts, as well as the rare and almost never fully intact fossil skulls, prompting an intense search by paleoanthropologists for better methods for estimating ancient human values. Here, cranial capacity methods for their estimation from Chinese human fossils were compared and analyzed, with the following results: 1) Anatomical features of early modern humans and modern humans are basically similar. Thus, the regression equation derived using modern human skull measurements to estimate cranial capacity applies to early modern human fossils; 2) Homo erectus’ thick skull and low cranium differ markedly from corresponding modern human features. Therefore, instead of the modern human formula, the regression equation derived here from Chinese Homo erectus skull measurements, C=-1301.944+60606L+0.718b+9.936h, should be used to calculate Homo erectus cranial capacity. Using this formula, the cranial capacity of the Lantian Homo erectus was estimated to be 918 mL, as compared to the previous estimate of 778 mL; 3) Physical features of archaic Homo sapiens, which lie somewhere between those of Homo erectus and early modern humans, vary markedly from these extremes; therefore their cranial capacities cannot be estimated using a single formula. For example, cranial capacities of archaic human fossils Dali and Hualongdong 6, which exhibit physical characteristics more closely resembling those of Homo erectus than those of early modern humans, are best calculated using the Homo erectus formula. Conversely, cranial capacities of archaic human fossils possessing physical characteristics closer to early modern humans than to Homo erectus, such as Xuchang 1, should be estimated using the modern human formula. In yet a third scenario, cranial capacities of fossils exhibiting physical characteristics between those of Homo erectus and early modern humans, such as Maba and Jinniushan, should be calculated using averages of values obtained using both modern human and Homo erectus formulae.

参考文献

[1] 吴秀杰, 张玄. 中国古人类颅内模及脑演化研究进展[J]. 人类学学报, 2018,37(3):371-383
[2] Manjunath KY. Estimation of cranial volume-an overview of methodologies[J]. Journal of the Anatomical Society of India, 2002,51:85-91
[3] Lee A, Pearson K. Data for the problem of evolution in man-a first study of the correlation of the human skull[J]. Philosophical Transactions of Royal Society, London, 1901,196a:225-264
[4] Woo TL. Formulae for the determination of the capacity of the Chinese skulls from external measurements[J]. Anthropology Journal Institute History Philology Sinica, 1942,2:1-14
[5] Stewart TD. Cranial capacity studies[J]. American Journal of Physical Anthropology, 1934,XVIII(3):337-361
[6] Uspenskii S. A new method for measuring cranial capacity[J]. American Journal of Physical Anthropology, 1954,22:115-117
[7] MacKinnon IL. The relation of the capacity of the human skull to its roentgenological length[J]. American Journal of Roentgenology, Radium therapy and Nuclear Medicine, 1955,14(6):1026-1029
[8] Mayhew TM, Olsen DR. Magnetic resonance imaging (MRI) and model-fore brain estimates of forebrain volume determined using the Cavalieri principle[J]. Journal of Anatomy, 1991,178:133-144
[9] Conroy GC, Vannier MW. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography[J]. Science, 1984,26:456-458
[10] Shipman P, Storm P. Missing Links: Euge`ne Dubois and the origins of Paleoanthropology[J]. Evolutionary Anthropolology, 2002,11:108-116
[11] Dart R. Australopithecus africanus. The man-ape of South Africa[J]. Nature, 1925,115:195-199
[12] 吴秀杰, 刘武, Schepartz L. 周口店直立人颅内模的复原与研究[J]. 人类学学报, 2004,23(增刊):22-34
[13] Leakey LSB, Tobias PV, Napier JR. A new species of the genus Homo from Olduvai Gorge[J]. Nature, 1964,202:7-9
[14] Zhang YM, Wu XJ, Schepartz L. Comparing methods for estimating cranial capacity in incomplete human fossils using the Jingchuan 1 partial cranium as an example[J]. Quanternary International, 2017,434:57-64
[15] 吴秀杰, 刘武, 董为, 等. 柳江人头骨化石的CT扫描与脑形态特征[J]. 科学通报, 2008,53(13):1570-1575
[16] 丁士海, 阎锡光, 法德华, 等. 颅容量的测量与推算的改进[J]. 人类学学报, 1992,11(3):241-249
[17] Oliver G, Dricot JM. Estimation of the cranial capacity of fossil hominids[A]. In: Tuttle RH ed. Primate Functional Morphology and Evolution. Paris: Mouton Publishers, 1975, 443-464
[18] 吴汝康. 广西柳江发现的人类化石[J]. 古脊椎动物与古人类, 1959,1:97-104
[19] 吴新智. 周口店山顶洞人化石的研究[J]. 古脊椎动物与古人类, 1961,3:181-203
[20] 裴文中, 吴汝康. 资阳人[M]. 中国科学院古脊椎动物与古人类研究所甲种专刊, 1957, 第1号: 1-71
[21] 李海军, 吴秀杰, 李盛华, 等. 甘肃泾川更新世晚期人类头骨的研究[J]. 科学通报, 2009,54(21):3357-3363
[22] Black D. The brain cast of Sinanthropus-A Review[J]. Journal of comparative neurology, 1932,56:361-366
[23] Weidenreich F. Observations on the form and proportions of the endocranial casts of Sinanthropus pekinensis and the great apes: A comparative study of brain size[M]. Palaeontologia Sinica Series D, 1936,7:1-50
[24] 邱中郎, 顾玉珉, 张银运, 等. 周口店新发现的北京猿人化石及其文化遗物[J]. 古脊椎动物与古人类, 1973,11:109-131
[25] Wu XJ, Holloway R, Schepartz L, et al. A New brain endocast of Homo erectus from Hulu Cave, Nanjing, China[J]. American Journal of Physical Anthropology, 2011,145:452-460
[26] 李天元, 艾美利, 廖美炎, 等. 郧县人头骨化石三维复原的初步研究[J]. 人类学学报, 2004,4(增刊):12-21
[27] 吴汝康, 董兴仁. 安徽和县猿人化石的初步研究[J]. 人类学学报, 1982,1:2-13
[28] 吴汝康. 蓝田猿人头骨的特征及其在人类进化系统上的地位[J]. 科学通报, 1965,6:488-493
[29] 吴新智. 陕西大荔县发现的早期智人古老类型的一个完好头骨[J]. 中国科学, 1981,2:200-206
[30] 吴汝康. 辽宁营口金牛山人化石头骨的复原及其主要性状[J]. 人类学学报, 1988,7:97-101
[31] Wu XJ, Bruner E. The Endocranial Anatomy of Maba 1[J]. American Journal of Physical Anthropology, 2016,160(4):633-643
[32] Li ZY, Wu XJ, Zhou LP, et al. Late Pleistocene archaic human crania from Xuchang, China[J]. Science, 2017,355(6328):969-972
[33] Wu XJ, Pei SW, Cai YJ, et al. Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation[J]. Proceedings of the National Academy of Sciences the United States of America, 2019,116:9820-9824
[34] 吴汝康, 彭如策. 广东韶关马坝发现的早期古人类型人类化石[J]. 古脊椎动物学报, 1959,3:176-182
[35] 张银运, 刘武. 南京汤山直立人脑容量的推算[J]. 人类学学报, 2003,22:201-205
文章导航

/