X射线衍射技术在烧骨实验研究中的初步应用
收稿日期: 2020-12-18
修回日期: 2021-02-18
网络出版日期: 2021-06-24
基金资助
中国科学院战略性先导科技专项(XDB26030203);国家自然科学基金面上项目(41772025);国家自然科学基金面上项目(41672023)
Preliminary application of the X-rays diffraction technique in experimental study of burnt bones
Received date: 2020-12-18
Revised date: 2021-02-18
Online published: 2021-06-24
烧骨作为考古遗址中较为常见的一类特征遗物,对研究古人类用火行为有着重要的意义。过往研究表明,骨骼在加热过程中,其内部晶体会根据加热程度的不同产生不同的变化。骨骼在加热前的状态,能够在一定程度上反映古人类对骨骼进行热处理的动机与目的。为了了解骨骼在焚烧前的初始状态是否会对其内部晶体产生不同的影响,本研究利用56件现生羊骨进行了烧骨实验。实验设置了带肉骨、剔肉骨和干骨三种不同初始状态的骨骼,并在前人的研究基础上进一步细化了焚烧温度和时间参数。焚烧完成后,利用X射线衍射技术对所有样品进行了分析并观察其衍射图的差异。实验结果显示,骨骼有机质含量的多少,骨骼内部元素的不同,在一定的温度和时间条件下,会对骨骼内晶体的形成产生不同的影响。文章最后探讨了这种差异在考古研究中运用的可能性。
黄超 , 张双权 . X射线衍射技术在烧骨实验研究中的初步应用[J]. 人类学学报, 2021 , 40(03) : 513 -525 . DOI: 10.16359/j.1000-3193/AAS.2021.0042
Burnt bones are commonly found in archaeological sites and they are significant to a due understanding of the uses of fire by prehistoric humans. Previous studies have shown that the crystalline state of burnt bones will change differently under varying heating intensities. In order to understand whether the initial states of bones will have some effects on their crystalline states after burning, 56 sheep bones were burned in this study. We prepared three different initial states of bones (fleshed, defleshed and dry), and we further refined the temperature and time parameters of incineration. All samples were analyzed by using XRD. We find that the different initial states did have an effect on the crystalline states of bones after their burning, under certain temperature and time conditions. We also discussed the possibility of the application of this discovery in archaeological research.
Key words: Burnt bone; Experimental archaeology; Zooarchaeology; Bioarchaeology; XRD; Bone mineral
[1] | Black D. Evidences of the use of fire by Sinanthropus[J]. Bulletin of the Geological Society of China, 1932,11(2):107-108 |
[2] | Brain CK, Sillen A. Evindence From The Swartkrans Cave For The Earliest Use Of Fire[J]. nature, 1988,336(6198):464-466 |
[3] | Shahack-Gross R, Bar-Yosef O, Weiner S. Black-Coloured Bones in Hayonim Cave, Israel: Differentiating Between Burning and Oxide Staining[J]. Journal of Archaeological Science, 1997,24(5):439-446 |
[4] | Weiner S, Xu Q, Goldberg P, et al. Evidence for the use of fire at Zhoukoudian,China[J]. Science, 1998,281:251-253 |
[5] | Stiner MC, Kuhn SL, Surovell TA, et al. Bone Preservation in Hayonim Cave (Israel): a Macroscopic and Mineralogical Study[J]. Journal of Archaeological Science, 2001,28(6):643-659 |
[6] | Alperson-Afil N, Goren-Inbar N (Eds.). The Acheulian site of Gesher Benot Ya’aqov volume II: Ancient flames and controlled use of fire[M]. Springer Science & Business Media, 2010,10 |
[7] | Berna F, Goldberg P, Horwitz LK, et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(20):E1215-E1220 |
[8] | 高星, 张双权, 张乐, 等. 关于北京猿人用火的证据:研究历史、争议与新进展[J]. 人类学学报, 2016,35(4):481-492 |
[9] | Gao X, Zhang S, Zhang Y, et al. Evidence of Hominin Use and Maintenance of Fire at Zhoukoudian[J]. Current Anthropology, 2017,58(S16):S267-S277 |
[10] | Stiner MC, Kuhn SL, Weiner S, et al. Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone[J]. Journal of Archaeological Science, 1995,22(2):223-237 |
[11] | Herrmann B. On histological investigations of cremated human remains[J]. Journal of Human Evolution, 1977,6(2):101-103 |
[12] | Brain CK. The Occurrence of Burnt Bones at Swartkrans and Their Implications for the Control of Fire by Early Hominids[A].In: Brain CK. Swartkrans: A Cave’s Chronicle of Early man[M]. Pretoria: Transvaal Museum, 1993: 229-242 |
[13] | Hanson M, Cain CR. Examining histology to identify burned bone[J]. Journal of Archaeological Science, 2007,34(11):1902-1913 |
[14] | Shipman P, Foster G, Schoeninger M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage[J]. Journal of Archaeological Science, 1984,4(11):307-325 |
[15] | Person A, Bocherens H, Saliège J, et al. Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis[J]. Journal of Archaeological Science, 1995,22(2):211-221 |
[16] | Thompson TJU, Gauthier M, Islam M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone[J]. Journal of Archaeological Science, 2009,36(3):910-914 |
[17] | Thompson TJU, Islam M, Piduru K, et al. An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,299(1-2):168-174 |
[18] | Schmahl WW, Kocsis B, Toncala A, et al. The Crystalline State of Archaeological Bone Material[A]. In: Grupe G, Grigat A, Mcglynn GC. Across the Alps in Prehistory[M]. Cham: Springer International Publishing, 2017, 75-104 |
[19] | Van Hoesel A, Reidsma FH, van Os BJH, et al. Combusted bone: Physical and chemical changes of bone during laboratory simulated heating under oxidising conditions and their relevance for the study of ancient fire use[J]. Journal of Archaeological Science: Reports, 2019,28:102033 |
[20] | Elliott JC. Calcium Phosphate Biominerals[J]. Reviews in Mineralogy and Geochemistry, 2002,48(1):427-453 |
[21] | Monge G, Carretero MI, Pozo M, et al. Mineralogical changes in fossil bone from Cueva del Angel, Spain: archaeological implications and occurrence of whitlockite[J]. Journal of Archaeological Science, 2014,46:6-15 |
[22] | Greiner M, Rodríguez-Navarro A, Heinig MF, et al. Bone incineration: An experimental study on mineral structure, colour and crystalline state[J]. Journal of Archaeological Science: Reports, 2019,25:507-518 |
[23] | Hiller JC, Thompson TJU, Evison MP, et al. Bone mineral change during experimental heating: an X-ray scattering investigation[J]. Biomaterials, 2003,24(28):5091-5097 |
[24] | Piga G, Malgosa A, Thompson TJU, et al. A new calibration of the XRD technique for the study of archaeological burned human remains[J]. Journal of Archaeological Science, 2008,35(8):2171-2178 |
[25] | Rogers K, Beckett S, Kuhn S, et al. Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010,296(1-2):125-129 |
[26] | 张双权, 张乐, 栗静舒, 等. 晚更新世晚期中国古人类的广谱适应生存——动物考古学的证据[J]. 中国科学:地球科学, 2016,8:1024-1036 |
[27] | Aldeias V. Experimental Approaches to Archaeological Fire Features and Their Behavioral Relevance[J]. Current Anthropology, 2017,58(S16):S191-S205 |
[28] | McKinley JI. The Anglo-Saxon Cemetery at Spong Hill, North Elmham Part VIII: The Cremations. East Anglian Archaeology Report NO.69[M]. Dereham: Norfolk Museum Service, 1994 |
[29] | Forbes G, Sc. B, B, MBC, et al. The Effects of Heat on the Histological Structure of Bone[J]. The Police Journal, 1941,14(1):50-60 |
[30] | Posner AS. Crystal Chemistry of Bone Mineral[J]. Physiological Reviews, 1969,49(4):760-787 |
[31] | Jumpei A, Seiichi M. Ca3(PO4)2 - CaNaPO4 System[J]. Bulletin of the Chemical Society of Japan, 1968,41(2):342-347 |
[32] | Piga G, Amarante A, Makhoul C, et al. β-Tricalcium Phosphate Interferes with the Assessment of Crystallinity in Burned Skeletal Remains[J]. Journal of Spectroscopy, 2018, ( 3-4):1-10 |
/
〈 | 〉 |