研究论文

广西灰窑田史前遗址人类髌骨的形态变异

  • 叶梓琪 ,
  • 何安益 ,
  • 梁优 ,
  • 李法军
展开
  • 1.中山大学人类进化与科技考古实验室,广州 510275
    2.加拿大西安大略大学人类学系,伦敦N6A 3K7
    3.广西文物保护与考古研究所,南宁5 300222
    4.中山大学社会学与人类学学院人类学系,广州 510275
叶梓琪,博士研究生,主要从事生物人类学研究。E-mail: yezq5@mail2.sysu.edu.cn
李法军,教授,主要从事生物人类学研究。E-mail: lifajun@mail.sysu.edu.cn

收稿日期: 2022-12-26

  修回日期: 2023-11-09

  网络出版日期: 2024-04-02

基金资助

华南史前人类遗骸反映的文化行为研究(13CKG002);广西史前时期人骨综合研究(23000-71210418)

Three-dimensional geometric morphometric analysis of patella morphology of the Neolithic people from Huiyaotian site in South China

  • YE Ziqi ,
  • HE Anyi ,
  • LIANG You ,
  • LI Fajun
Expand
  • 1. Laboratory of Human Evolution and Archaeometry, Sun Yat-sen University, Guangzhou 510275
    2. Department of Anthropology, Western University, London, N6A 3K7, Canada
    3. Guangxi Institute of Cultural Relics Protection and Archaeology, Nanning 530022
    4. Department of Anthropology, School of Sociology and Anthropology, Sun Yat-sen University, Guangzhou 510275

Received date: 2022-12-26

  Revised date: 2023-11-09

  Online published: 2024-04-02

摘要

距今约7000~6000年的广西灰窑田遗址是顶蛳山文化的重要遗址之一,其所出人类遗骸为探讨岭南地区史前时期渔猎-采集型人群的肢体活动方式、活动强度以及两性劳动分工等问题提供了重要的研究样本。髌骨作为膝关节的重要组成,其形态变异特征在一定程度上可以反应个体膝关节的活动程度与特点。本文采用三维几何形态测量方法对该遗址出土的43例人类髌骨进行分析,从侧别对称性、性别二态性以及年龄差异性等三个方面考察了髌骨的大小和形态差异。研究结果表明,该遗址古人类髌骨发育存在明显的左侧优势,髌尖呈右偏趋势。男性髌骨尺寸较大,但两性髌骨形态未见显著差异。该遗址个体髌骨形态随年龄增长呈现出与股四头肌力量增强、屈伸运动强度与频率增加相关的变化特征。

本文引用格式

叶梓琪 , 何安益 , 梁优 , 李法军 . 广西灰窑田史前遗址人类髌骨的形态变异[J]. 人类学学报, 2024 , 43(02) : 259 -272 . DOI: 10.16359/j.1000-3193/AAS.2024.0021

Abstract

The shape variability of human lower limbs is one of the core topics in human evolutionary and locomotion anatomy, and it provides clues about human activities and labor in different subsistence. However, evaluations of knee morphological function analysis are commonly conducted on the distal femora and proximal tibiae, while patellae, as the essential components of the knee joint, have not been observed and evaluated with the morphological methods until the recent decade. From the anatomic perspective, dragged by soft tissues such as the quadriceps muscle group, patellar tendon, and medial and lateral patellar retinaculum, the patella can be shaped in various morphological characteristics in different locomotive preferences. Meanwhile, the constantly attach to the distal femur during flexion and extension also adjusts the articular surface of the patella. According to these assumptions, the morphological variation of patellae can theoretically manifest the development of these muscles and ligaments and the force preference in lower limb activities. As a significant site of Dingsishan Neolithic culture, the Huiyaotian site reveals a typical hunting-gathering subsistence in Southern China. The site locates on the first terrace near to the Yongjiang River in Qingxiu District of Nanning city, Guangxi. Since 1977, archaeologists have conducted several investigations into the site. In 2006 and 2016, the Guangxi Institute of Cultural Relics Protection and Archaeology, in collaboration with the Nanning Museum, conducted archaeological excavations and salvage excavations on the site, and discovered relatively rich archaeological and cultural relics. In 2006, more than 50 human burials were excavated and revealed, with burial styles including limb-flexed, contracted, and hyper-flexed (parts of them belong to dismembered burials). The authors apply three-dimensional geometric morphometric methods to the human patellae (n=43) from the site. With three main topics of bilateral asymmetry, sexual dimorphism, and age differentiation, the authors aim to identify and visualize patellae's morphological variation and the intra-group difference in this hunting-gathering society. In addition, the authors form a specific series of three-dimensional geometric morphometric methods on human patellae, including landmark setting, measure error estimation, and functional interpretation. The result indicates that the habitants developed the greater left-biases in the size of the patellae, with the right deflection of both patella apexes. The bilateral asymmetry in size and shape can point to an unbalance locomotion in labor and daily activities. Males are proven to have larger patellae. There is no significant difference in morphology between males and females, while previous research revealed a significant sexual dimorphism in diaphyseal biomechanism. It manifests the asynchronism among biomechanism and morphology, patellae, and diaphyseal limb bones. Subadults tend to own smaller patellae, with longer patellar apexes and steeper patellar bases. Morphological change with age development might refer to the strengthening of the Quadriceps muscle, and the increasing intensity and frequency of knee flexion and extension.

参考文献

[1] 李珍, 黄云忠. 南宁市灰窑田新石器时代遗址[C].见:国家文物局.2006年中国重要考古发现[M]. 北京: 文物出版社, 2007, 381-382
[2] 梁优, 何安益. 广西壮族自治区南宁市青秀区灰窑田新石器时代贝丘遗址[Z].见:中国考古学会.中国考古学年鉴(2017)[C]. 北京: 文物出版社, 2017, 380-381
[3] Matsumura H, Hung HC, Li Z, et al. Bio-anthropological studies of early Holocene hunter-gatherer sites at Huiyaotian and Liyupo in Guangxi, China[M]. Tokyo: National Museum of Nature and Science Monographs, No.47, 2017
[4] 李珍. 邕宁顶蛳山贝丘遗址[J]. 中国文化遗产, 2008, 5: 119-122
[5] Hung H, Zhang C, Matsumura H, et al. Neolithic transition in Guangxi: A long development of hunting-gathering society in southern China[A]. In: Matsumura H, Hung HC, Li Z, et al (eds). Bio-anthropological studies of early Holocene hunter-gatherer sites at Huiyaotian and Liyupo in Guangxi, China[C]. Tokyo: National Museum of Nature and Science Monographs, No.47, 2017, 205-228
[6] 何安益, 彭长林, 刘资民, 等. 广西资源县晓锦新石器时代遗址发掘简报[J]. 考古, 2004, 3: 7-30
[7] 张弛, 洪晓纯. 华南和西南地区农业出现的时间及相关问题[J]. 南方文物, 2009, 3: 64-71
[8] 李法军. 鲤鱼墩遗址史前人类行为模式的骨骼生物力学分析[J]. 人类学学报, 2017, 36(2): 193-215
[9] 李法军. 华南地区史前人类骨骼的生物力学特征[J]. 人类学学报, 2020, 39(4): 599-615
[10] 梅欣欣. 广西崇左冲塘-何村古人类长骨生物力学研究[D]. 广州: 中山大学硕士学位论文, 2020
[11] McHenry HM. Biomechanical interpretation of the early hominid hip[J]. Journal of Human Evolution, 1975, 4(5): 343-355
[12] Turley K, Guthrie EH, Frost SR. Geometric morphometric analysis of Tibial shape and presentation among catarrhine taxa[J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 2011, 294(2): 217-230
[13] Knigge RP, Tocheri MW, Orr CM, et al. Three-dimensional geometric morphometric analysis of talar morphology in extant gorilla taxa from highland and lowland habitats[J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 2015, 298(1): 277-290
[14] Lovejoy CO. The natural history of human gait and posture: Part 3. The knee[J]. Gait & posture, 2007, 25(3): 325-341
[15] Frelat MA, Shaw CN, Sukhdeo S, et al. Evolution of the hominin knee and ankle[J]. Journal of Human Evolution, 2017, 108: 147-160
[16] 惠家明. 现代人股骨远端形态变异及其功能适应性——以全新世中国人群为例[D]. 北京: 中国科学院大学硕士学位论文, 2020
[17] Lanyon LE, Goodship AE, Pye C, et al. Mechanically adaptive bone remodelling[J]. Journal of biomechanics, 1982, 15(3): 141-154
[18] Ruff C, Holt B, Trinkaus E. Who's afraid of the big bad Wolff?:“Wolff's law” and bone functional adaptation[J]. American Journal of Physical Anthropology, 2006, 129(4): 484-498
[19] Dwek JR, Chung CB. The patellar extensor apparatus of the knee[J]. Pediatric Radiology, Springer, 2008, 38(9): 925-935
[20] 杜清太. 长春地区出土的髌骨测量[J]. 人类学学报, 1984, 3(2): 114-117
[21] 周盛斌, 张飚, 荣玉山, 等. 中国汉族成人髌骨性别判别初步研究[J]. 人类学学报, 1997, 1: 32-38
[22] 张继宗. 法医人类学基础[M]. 北京: 科学出版社, 2007
[23] Morimoto I. Secular Trend in Emargination of the Japanese Patella, with Special Reference to the Skeletal Gracility of the Earliest Jomon People[J]. Journal of the Anthropological Society of Nippon, 1975, 83(1): 85-94
[24] Martin R, Saller K. Lehrbuch der Anthropologie II[M]. Stuttgart: G.Fischer, 1957
[25] Wiberg G. Roentgenographs and anatomic studies on the femoropatellar joint: with special reference to chondromalacia patellae[J]. Acta Orthopaedica Scandinavica, 1941, 12(1-4): 319-410
[26] 朱泓 (主编). 体质人类学[M]. 北京: 高等教育出版社, 2004
[27] White T D, Folkens P A. The human bone manual[M]. Burlington: Elsevier, 2005
[28] Bookstein FL. Morphometric tools for landmark data[M]. Cambridge: Cambridge University Press, 1997
[29] Rosas A, Agustina BL, García-Martínez D, et al. Analyses of the neandertal patellae from El Sidrón (Asturias, Spain) with implications for the evolution of body form in Homo[J]. Journal of Human Evolution, 2020, 141: 102738
[30] Menéndez LP. Comparing methods to assess intraobserver measurement error of 3D craniofacial landmarks using geometric morphometrics through a digitizer arm[J]. Journal of Forensic Sciences, 2017, 62(3): 741-746
[31] Palancar CA, Torres-Tamayo N, García-Martínez D, et al. Comparative anatomy and 3D geometric morphometrics of the El Sidrón atlases (C1)[J]. Journal of Human Evolution, 2020, 149: 102897
[32] Adams DC, Otárola-Castillo E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013, 4(4): 393-399
[33] Schlager S. Chapter 9 - morpho and rvcg-shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations[A]. In: Zheng G, Li S, Székely G(eds). Statistical shape and deformation analysis[M]. New York: Academic Press, 2017, 217-256
[34] Klingenberg CP. MorphoJ: An integrated software package for geometric morphometrics[J]. Molecular Ecology Resources, 2011, 11(2): 353-357
[35] Schaefer K, Mitteroecker P, Gunz P, et al. Craniofacial sexual dimorphism patterns and allometry among extant hominids[J]. Annals of Anatomy - Anatomischer Anzeiger, 2004, 186(5): 471-478
[36] Klingenberg CP. Size, shape, and form: Concepts of allometry in geometric morphometrics[J]. Development Genes and Evolution, 2016, 226(3): 113-137
[37] Renaud S, Ecalle B, Claisse P, et al. Patterns of bilateral asymmetry and allometry in late Devonian Polygnathus conodonts[J]. Palaeontology, John Wiley & Sons, Ltd, 2021, 64(1): 137-159
[38] Klingenberg CP, McIntyre GS. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods[J]. Evolution, Wiley Online Library, 1998, 52(5): 1363-1375
[39] Trinkaus E. Functional aspects of Neandertal pedal remains[J]. Foot and Ankle, 1983, 3(6): 377-390
[40] Marchi D, Walker C S, Wei P, et al. The thigh and leg of Homo naledi[J]. Journal of Human Evolution, 2017, 104: 174-204
[41] Rosas A, Agustina BL, García-Martínez D, et al. Analyses of the neandertal patellae from El Sidrón (Asturias, Spain) with implications for the evolution of body form in Homo[J]. Journal of Human Evolution, 2020, 141: 102738
[42] Scuderi GR, Kibiuk LV, Insall JN. The patella[M]. New York: Springer, 1995
[43] Trinkaus E. Human patellar articular proportions: recent and Pleistocene patterns[J]. Journal of Anatomy, 2000, 196(3): 473-483
[44] Wheatley MGA, Clouthier AL, Thelen DG, et al. Patella Apex Influences Patellar Ligament Forces and Ratio[J]. Journal of Biomechanical Engineering, American Society of Mechanical Engineers Digital Collection, 2021, 143(8): 081014
[45] Pina M, Almécija S, Alba DM, et al. The middle Miocene ape Pierolapithecus catalaunicus exhibits extant great ape-like morphometric affinities on its patella: Inferences on knee function and evolution[J]. PLOS ONE, 2014, 9(3): e91944
[46] Hahn T, Foldspang A. The Q angle and sport[J]. Scandinavian journal of medicine & science in sports, Wiley Online Library, 1997, 7(1): 43-48
[47] Livingston LA. The quadriceps angle: A review of the literature[J]. Journal of Orthopaedic & Sports Physical Therapy 1998, 28(2): 105-109
[48] Livingston LA, Mandigo JL. Bilateral Q angle asymmetry and anterior knee pain syndrome[J]. Clinical biomechanics, 1999, 14(1): 7-13
[49] Raveendranath R, Nachiket S, Sujatha N, et al. Bilateral variability of the quadriceps angle (Q angle) in an adult indian population[J]. Iranian journal of basic medical sciences, 2011, 14(5): 465
[50] Prakash S, Choudhary M, Manjappa C. Influence of gender and bilateral variability of the quadriceps angle (Q angle) among adults[J]. International Journal of Orthopaedics Sciences, 2019, 5(2): 688-691
[51] Shultz SJ, Nguyen AD. Bilateral asymmetries in clinical measures of lower-extremity anatomic characteristics[J]. Clinical journal of sport medicine, 2007, 17(5): 357-361
[52] Eckhoff DG, Jacofsky DJ, Springer BD, et al. Bilateral symmetrical comparison of femoral and tibial anatomic features[J]. The Journal of Arthroplasty, 2016, 31(5): 1083-1090
[53] 郑靖中. 西安地区现代人胫骨的人类学研究[J]. 人类学学报, 1987, 6(1): 19-27
[54] Introna F, Di Vella G, Campobasso CP. Sex determination by discriminant analysis of patella measurements[J]. Forensic Science International, 1998, 95(1): 39-45
[55] Auerbach BM, Ruff CB. Limb bone bilateral asymmetry: Variability and commonality among modern humans[J]. Journal of Human Evolution, 2006, 50(2): 203-218
文章导航

/