Acta Anthropologica Sinica ›› 2023, Vol. 42 ›› Issue (01): 110-121.doi: 10.16359/j.1000-3193/AAS.2022.0055
• Research Articles • Previous Articles Next Articles
GU Chunguang1(), LUO Wuhong1(), ZHANG Dong2, YANG Yuzhang1
Received:
2021-09-03
Revised:
2021-12-22
Online:
2023-02-15
Published:
2023-02-20
CLC Number:
GU Chunguang, LUO Wuhong, ZHANG Dong, YANG Yuzhang. Phytolith evidence for the agricultural development during Shuangdun cultural period from the Yuhuicun site, Anhui Province[J]. Acta Anthropologica Sinica, 2023, 42(01): 110-121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2022.0055
实验编号 Lab No. | 材料Materials | 出土单位Context | 14C date (BP) | 树轮校正后年代Calibrated date (BC cal) | |
---|---|---|---|---|---|
1σ (68.3%) | 2σ (95.4%) | ||||
ZK-9624 | 木炭Charcoal | T6104H061 | 6260±40 | 5306(68.3%) 5210 | 5316 (72.4%) 5204 |
5174 (22.8%) 5069 | |||||
ZK-9629 | 木炭Charcoal | T6204H037 | 6170±30 | 5208 (3.3%) 5202 | 5214 (94.5%) 5028 |
5184 (21.3%) 5146 | 5021 (0.9%) 5015 | ||||
5131 (43.7%) 5054 | |||||
ZK-9632 | 木炭Charcoal | T6312(3)下红烧土堆积 | 6220±40 | 5290 (10.6%) 5268 | 5305 (21.1%) 5240 |
5218 (6.9%) 5206 | 5230 (11.4%) 5196 | ||||
5172 (50.7%) 5072 | 5191 (62.9%) 5046 | ||||
ZK-9633 | 木炭Charcoal | T6412K4 | 6240±30 | 5301 (37.6%) 5252 5224 (12.0%) 5207 5160 (15.9%) 5124 5090 (2.8%) 5083 | 5306 (58.9%) 5204 5175 (36.6%) 5067 |
Tab.1 AMS-14C data of the charcoal sample of the Yuhuicun site
实验编号 Lab No. | 材料Materials | 出土单位Context | 14C date (BP) | 树轮校正后年代Calibrated date (BC cal) | |
---|---|---|---|---|---|
1σ (68.3%) | 2σ (95.4%) | ||||
ZK-9624 | 木炭Charcoal | T6104H061 | 6260±40 | 5306(68.3%) 5210 | 5316 (72.4%) 5204 |
5174 (22.8%) 5069 | |||||
ZK-9629 | 木炭Charcoal | T6204H037 | 6170±30 | 5208 (3.3%) 5202 | 5214 (94.5%) 5028 |
5184 (21.3%) 5146 | 5021 (0.9%) 5015 | ||||
5131 (43.7%) 5054 | |||||
ZK-9632 | 木炭Charcoal | T6312(3)下红烧土堆积 | 6220±40 | 5290 (10.6%) 5268 | 5305 (21.1%) 5240 |
5218 (6.9%) 5206 | 5230 (11.4%) 5196 | ||||
5172 (50.7%) 5072 | 5191 (62.9%) 5046 | ||||
ZK-9633 | 木炭Charcoal | T6412K4 | 6240±30 | 5301 (37.6%) 5252 5224 (12.0%) 5207 5160 (15.9%) 5124 5090 (2.8%) 5083 | 5306 (58.9%) 5204 5175 (36.6%) 5067 |
[1] | Bellwood P. First farmers: The Origins of Agricultural Societies[M]. Oxford: Blackwell, 2005, 111-127 |
[2] |
Zuo XX, Lu HY, Jiang LP, et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene[J]. Proceedings of the National Academy of Sciences, 2017, 114(25): 6486-6491
doi: 10.1073/pnas.1704304114 URL |
[3] |
Yang XY, Wan ZW, Perry L, et al. Early millet use in northern China[J]. Proceedings of the National Academy of Sciences, 2012, 109(10): 3726-3730
doi: 10.1073/pnas.1115430109 URL |
[4] | Lu HY, Zhang JP, Liu KB, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago[J]. Proceeding of the National Academy of Sciences of the United States, 2009, 106(18): 7367-7372 |
[5] |
He KY, Lu HY, Zhang JP, et al. Prehistoric evolution of the dualistic structure mixed rice and millet farming in China[J]. The Holocene, 2017, 27(12): 1885-1898
doi: 10.1177/0959683617708455 URL |
[6] |
Yang YZ, Cheng ZJ, Li WY, et al. The emergence, development and regional differences of mixed farming of rice and millet in the upper and middle Huai River Valley, China[J]. Science China: Earth Sciences, 2016, 59(9): 1779-1790
doi: 10.1007/s11430-015-5340-3 URL |
[7] |
Huang R, Zhu C, Guan Y, et al. Impact of Holocene environmental change on temporal-spatial distribution of Neolithic sites in Huaihe River Basin, Anhui Province[J]. Journal of Geographical Science, 2006, 16(2): 199-208
doi: 10.1007/s11442-006-0208-x URL |
[8] | 韩建业. 早期中国-中国文化圈的形成和发展(第一版)[M]. 上海: 上海古籍出版社, 2020, 13-188 |
[9] | 安徽省文物考古研究所, 蚌埠市博物馆. 蚌埠双墩——新石器时代遗址发掘报告[M]. 北京: 科学出版社, 2008, 399-476 |
[10] |
Luo WH, Gu CG, Yang YZ, et al. Phytoliths reveal the earliest interplay of rice and broomcorn millet at the site of Shuangdun (ca. 7.3-6.8 ka BP) in the middle Huai River valley, China[J]. Journal of Archaeological Science, 2019, 102: 26-34
doi: 10.1016/j.jas.2018.12.004 URL |
[11] | 管理, 胡耀武, 王昌燧, 等. 食谱分析方法在家猪起源研究中的应用[J]. 南方文物, 2011, 4: 116-124 |
[12] |
Zhang YN, Zhang D, Yang YL, et al. Pollen and lipid analysis of coprolites from Yuhuicun and Houtieying, China: Implications for human habitats and diets[J]. Journal of Archaeological Science: Reports, 2020, 29: 102135
doi: 10.1016/j.jasrep.2019.102135 URL |
[13] | Piperno DR. Phytoliths: A Comprehensive Guide forArchaeologists and Paleoecologists[M]. New York: AltaMira Press, 2006, 1-248 |
[14] | 吕厚远. 中国史前农业起源演化研究新方法与新进展[J]. 中国科学(地球科学), 2018, 48(2): 181-199 |
[15] | Piperno DR. Phytolith analysis-an archaeological and geological perspective[M]. San Diego: Academic Press, 1988, 1-288 |
[16] |
Rung F, Laws KR, Neve C. The opal phytolith inventory of soils in central Africa-quantities, shapes, classification and spectra[J]. Review of Palaeobotany and Palynology, 1999, 107(1-2): 23-53
doi: 10.1016/S0034-6667(99)00018-4 URL |
[17] |
Luo WH, Li J, Yang YZ, et al. Evidence for crop structure from phytoliths at the Dongzhao site on the Central Plains of China from Xinzhai to Erligang periods[J]. Journal of Archaeological Science: Reports, 2018, 17: 852-859
doi: 10.1016/j.jasrep.2017.12.018 URL |
[18] | 王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1992, 48-124 |
[19] | Lu HY, Wu NQ, Liu B. Recognition of rice phytoliths[A]. In: Pinilla A, Juan-Tresserras J, Machado MJ. The State-of-the-Art Phytolith in soils and Plants[M]. Madrid: Monografias del Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, 1997, 159-174 |
[20] |
Lu HY, Zhang JP, Wu NQ, et al. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum)[J]. PloS One, 2009, 4: e4448
doi: 10.1371/journal.pone.0004448 URL |
[21] |
Ge Y, Lu HY, Zhang JP, et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications[J]. Archaeological and Anthropological Sciences, 2018, 10(1): 61-73
doi: 10.1007/s12520-016-0341-0 URL |
[22] | 赵志军. 中国古代农业的形成过程-浮选出土植物遗存证据[J]. 第四纪研究, 2014, 34(1): 73-84 |
[23] |
Madella M, Jones MK, Echlin P, et al. Plant water availability and analytical microscopy of phytoliths: Implications for ancient irrigation in arid zones[J]. Quaternary International, 2009, 193: 32-40
doi: 10.1016/j.quaint.2007.06.012 URL |
[24] |
Weisskopf A, Qin L, Ding JL, et al. Phytoliths and rice: From wet to dry and back again in the Neolithic Lower Yangtze[J]. Antiquity, 2015, 89: 1051-1063
doi: 10.15184/aqy.2015.94 URL |
[25] |
Weisskopf A. A wet and dry story: Distinguishing rice and millet arable systems using phytoliths[J]. Vegetation History and Archaeobotany, 2017, 26: 99-109
doi: 10.1007/s00334-016-0593-8 URL |
[26] | Zhao ZJ, Pearsall DM, Benfer RA, et al. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II, finalized method[J]. Economic Botany, 1998, 52(2): 34-45 |
[27] |
Zheng YF, Dong YJ, Matsui A, et al. Molecular genetic basis of determining subspecies of ancient rice using the shape of phytoliths[J]. Journal of Archaeological Science, 2003, 30(10): 1215-1221
doi: 10.1016/S0305-4403(02)00248-0 URL |
[28] |
Huan XJ, Lu HY, Wang C, et al. Bulliform phytolith research in wild and domesticated rice paddy soil in south China[J]. PloS One, 2015, 10(10): e0141255
doi: 10.1371/journal.pone.0141255 URL |
[29] | 郇秀佳, 吕厚远, 王灿, 等. 水稻扇型植硅体野生——驯化特征研究进展[J]. 古生物学报, 2020, 59(4): 467-478 |
[30] | Wang CL, Udatsu T, Fujiwara H. Relationship between motor cell silica body shape and grain morphological / physiological traits for discriminating indica and japonica rice in China[J]. Japanese Journal of Breeding, 1996, 46(1): 61-66 |
[31] | 程至杰, 杨玉璋, 张居中, 等. 安徽淮南小孙岗遗址炭化植物遗存研究[J]. 第四纪研究, 2016, 36(2): 302-311 |
[32] |
Zhang JP, Lu HY, Gu WF, et al. Early mixed farming of millet and rice 7800 years ago in the middle Yellow River Region, China[J]. PloS One, 2012, 7(12): e52146
doi: 10.1371/journal.pone.0052146 URL |
[33] | Wang C, Lu HY, Gu WF, et al. Temporal changes of mixed millet and rice agriculture in Neolithic-Bronze Age Central Plain, China: Archaeobotanical evidence from the Zhuzhai site[J]. The Holocene, 2017, 1-17 |
[34] | 张居中, 程至杰, 蓝万里, 等. 河南舞阳贾湖遗址植物考古研究的新进展[J]. 考古, 2018, 4: 100-110 |
[35] | 程至杰, 齐鸣, 曾令园, 等. 河南项城贾庄和后高老家遗址炭化植物遗存分析-兼论豫东地区仰韶时代的原始农业[J]. 人类学学报, 2020, 39(e): 825-836 |
[36] | 易文文, 魏兴涛, 杨玉璋, 等. 河南舞阳张王庄遗址仰韶早期先民食物的淀粉粒分析[J]. 人类学学报, 2020, 39(5): 411-423 |
[37] |
Jin GY, Wu WW, Zhang KS, et al. 8000-Year old rice remains from the north edge of the Shandong Highlands, East China[J]. Journal of Archaeological Science, 2014, 51: 34-42
doi: 10.1016/j.jas.2013.01.007 URL |
[38] |
Crawford GW, Chen XX, Luan FS, et al. People and plant interaction at the Houli Culture Yuezhuang site in Shandong Province, China[J]. The Holocene, 2016, 26(10): 1594-1604
doi: 10.1177/0959683616650269 URL |
[39] |
Jin GY, Chen S, Li H, et al. The Beixin Culture: archaeobotanical evidence for a population dispersal of Neolithic hunter-gatherer-cultivators in northern China[J]. Antiquity, 2020, 94 (378): 1426-1443
doi: 10.15184/aqy.2020.63 URL |
[40] | 胡飞. 淮河中游及巢湖流域史前文化演化及其农业发展的环境背景研究[D]. 合肥: 中国科学技术大学, 2014, 59-97 |
[41] | 冯晓敏. 不同黍稷品种耐旱性差异及生理生态特性研究[D]. 临汾: 山西师范大学, 2012, 1-61 |
[42] | 韩志平, 张海霞, 张巽, 等. 水分胁迫对黍子幼苗生长和生理特性的影响[J]. 中国农业气象, 2019, 40(8): 502-511 |
[43] | 韩建业. 双墩文化的北上与北辛文化的形成——从济宁张山“北辛文化遗存”论起[J]. 江汉考古, 2012, 2: 46-50 |
[44] |
Wu Y, Jiang LP, Zheng YF, et al. Morphological trend analysis of rice phytolith during the early Neolithic in the Lower Yangtze[J]. Journal of Archaeological Science, 2014, 49: 326-331
doi: 10.1016/j.jas.2014.06.001 URL |
[45] |
Luo WH, Yang YZ, Yao L, et al. Phytolith records of rice agriculture during the Middle Neolithic in the middle reaches of Huai River region, China[J]. Quaternary International, 2016, 426: 133-140
doi: 10.1016/j.quaint.2016.03.010 URL |
[46] | 邱振威, 庄丽娜, 林留根, 等. 江苏泗洪韩井遗址水稻驯化的植硅体证据及相关问题[J]. 东南文化, 2018, 1: 71-80+68-70 |
[47] |
Deng ZH, Qin L, Gao Y, et al. From early domesticated rice of the Middle Yangtze Basin to millet, rice and wheat agriculture: archaeobotanical macro-remains from Baligang, Nanyang Basin, Central China (6700-500 BC)[J]. PloS One, 2015, 10 (10): e0139885
doi: 10.1371/journal.pone.0139885 URL |
[48] |
Zheng YF, Crawford GW, Jiang LP, et al. Rice domestication revealed by reduced shattering of archaeological rice from the lower Yangtze valley[J]. Scientific Reports, 2016, 6: 28136
doi: 10.1038/srep28136 pmid: 27324699 |
[49] |
Luo WH, Yang YZ, Zhuang LN, et al. Phytolith evidence of water management for rice growing and processing between 8500 and 7500 cal years bp in the middle Huai river valley, China[J]. Vegetation History and Archaeobotany, 2021, 30: 243-254
doi: 10.1007/s00334-020-00782-2 URL |
[50] | 金权. 安徽淮北平原第四系[M]. 北京: 地质出版社, 1990, 39-141 |
[1] | LI Xiaoqiang. The origin, spread, and impact of agriculture [J]. Acta Anthropologica Sinica, 2022, 41(06): 1097-1108. |
[2] | GE Lihua, ZHU Chao, AN Jingping, WANG Zhenxiang, JIN Guiyun. Subsistence economy model reflected by phytolith from the Chengziya site [J]. Acta Anthropologica Sinica, 2022, 41(05): 883-898. |
[3] | YANG Fan, GU Wanfa, DUAN Qimeng, ZHENG Xiaoqu, JIA Yin, JIN Guiyun. Phytolith from the Wanggou site in Zhengzhou, Henan [J]. Acta Anthropologica Sinica, 2022, 41(03): 429-438. |
[4] | CHEN Guanhan, ZHOU Xinying, SHEN Hui, Khasannov Mutalibjon, MA Jian, REN Meng, Annaev Tukhtash, WANG Jianxin, LI Xiaoqiang. Evolution of oasis agriculture and civilization exchange since the Bronze age in Transoxiana, Central Asia [J]. Acta Anthropologica Sinica, 2021, 40(06): 1108-1120. |
[5] | LIU Huan, SONG Guoding, LI Suting. Analysis of carbonized macroremains from the Zhangdeng site, Henan [J]. Acta Anthropologica Sinica, 2021, 40(06): 1063-1071. |
[6] | LIU Xiaodi, WEI Dong, WANG Tingting, ZHANG Xinyu, HU Yaowu. Stable isotope analysis reveals an agricultural economy in Southeast Inner Mongolia during the Warring States period [J]. Acta Anthropologica Sinica, 2021, 40(05): 764-775. |
[7] | YI Wenwen, WEI Xingtao, YANG Yuzhang, YAO Ling, LAN Wanli, ZHANG Xiaohu, ZHANG Juzhong. An analysis of the starch grains from the Zhangwangzhuang site of early Yangshao culture [J]. Acta Anthropologica Sinica, 2021, 40(05): 867-878. |
[8] | BAO Jinping, ZHENG Lianbin, XI Huanjiu, LI Yonglan. Development of subcutaneous fat in the Chinese Han people [J]. Acta Anthropologica Sinica, 2019, 38(02): 285-291. |
[9] | XIA Xiumin, YIN Yupeng, XU Weihong, WU Yan. The discovery and discussion of rice remains from the Archaeological Site of Dongyang, Huaxian County, Shaanxi Province [J]. Acta Anthropologica Sinica, 2019, 38(01): 119-131. |
[10] | TAO Dawei, CHEN Zhaoyun. Starch grain analysis of human dental calculus from the Guanzhuang site, Henan Province [J]. Acta Anthropologica Sinica, 2018, 37(03): 467-477. |
[11] | ZHANG Guowen, SUN Zudong, CHEN Fengshan, MICHAEL P Richards. Stable Isotope Analysis on the Animal and Human Bones of the Early Xianbei [J]. Acta Anthropologica Sinica, 2017, 36(01): 110-118. |
[12] | XIA Xiumin, SUN Zhouyong, YANG Liping, KANG Ningwu, CHEN Xianglong, WANG Changsui, WU Yan. Analysis of phytoliths from the Wangyangpan archaeological site, Yulin, North Shaanxi [J]. Acta Anthropologica Sinica, 2016, 35(02): 257-266. |
[13] | CHEN Tao, JIANG Zhanghua, HE Kunyu, YANG Yang, Jade d’Alpoim GUEDES, JIANG Hongen, HU Yaowu, WANG Changsui, WU Yan. Phytolith Analysis from the Baodun Archaeological Site, Xinjin, Sichuan [J]. Acta Anthropologica Sinica, 2015, 34(02): 225-233. |
[14] | YUAN Hai-bing; ZHU Hong. Statistics and analysis of dental caries of human remains from the Hongshan culture at the Niuheliang site, Liaoning Province [J]. Acta Anthropologica Sinica, 2012, 31(01): 60-70. |
[15] | GUO YI; HU Yao-wu; GAO Qiang; WANG Chang-sui; Michael P.Richards. Stable carbon and nitrogen isotope evidence in human diets based on evidence from the Jiangzhai site, China [J]. Acta Anthropologica Sinica, 2011, 30(02): 149-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||