研究论文

辽宁建平古人类肱骨形态结构分析

  • 魏偏偏 ,
  • 赵昱浩 ,
  • 何嘉宁
展开
  • 1.复旦大学生命科学学院现代人类学教育部重点实验室,复旦大学人类遗传学与人类学系,上海 200438
    2.Centre for the Exploration of the Deep Human Journey, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
    3.中国科学院脊椎动物演化与人类起源重点实验室, 中国科学院古脊椎动物与古人类研究所, 北京 100044
    4.中国科学院生物演化与环境卓越创新中心, 北京 100044
    5.中国科学院大学, 北京 100049
    6.北京大学考古文博学院, 北京100871
魏偏偏,博士后。Email: weipianpian@fudan.edu.cn

收稿日期: 2020-07-20

  修回日期: 2020-08-27

  网络出版日期: 2020-11-30

基金资助

中国科学院战略性先导科技专项(XDB26000000);国家自然科学基金(41802020);中国博士后科学基金面上项目(2017M611449)

Structural properties of humeral remains from Jianping, Liaoning province

  • Pianpian WEI ,
  • Yuhao ZHAO ,
  • Jianing HE
Expand
  • 1. Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438
    2. Centre for the Exploration of the Deep Human Journey, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
    3. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044
    4. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044
    5. University of Chinese Academy of Sciences, Beijing 100049
    6. School of Archaeology and Museology, Peking University, Beijing 100871

Received date: 2020-07-20

  Revised date: 2020-08-27

  Online published: 2020-11-30

摘要

1957年,在辽宁省建平县发现了一根古人类肱骨化石,编号PA103。通过同一批龙骨中筛选的哺乳动物化石,吴汝康推断PA103应该为更新世晚期古人类,并对该化石进行了表面形态特征观察和描述。为了对PA103化石的内外结构进行更全面的了解,除了线性测量数据的对比,本文还通过计算机断层扫描技术,结合生物力学和形态示量图分析对建平古人类右侧肱骨化石PA103进行了分析。通过本研究发现,PA103骨干横断面的生物力学粗壮度和力学形状指数明显小于尼安德特人,而与同时期欧亚大陆古人类不利手侧最为接近,这说明建平人右侧肱骨可能不是惯用手,同时,建平人的行为活动应该与同时期同地区的古人类处于同一水平,而小于尼安德特人。整体来看,PA103骨干骨密质厚度和截面惯性矩与近现代人的分布模式较为接近,除局部数值增大外,其整体数值小于近现代人的平均水平,这可能与遗传或行为活动有关,由于缺少古人类化石对比数据,更详细的了解还需后期开展更多相关的研究。

本文引用格式

魏偏偏 , 赵昱浩 , 何嘉宁 . 辽宁建平古人类肱骨形态结构分析[J]. 人类学学报, 2021 , 40(06) : 943 -954 . DOI: 10.16359/j.cnki.cn11-1963/q.2020.0069

Abstract

In 1957, one humeral diaphysis of human (PA103) was discovered in Jianping couty, Liaoning province, northern China. According to the comparison of mammal fossils from the same layer, PA103 could be attributed to Late Pleistocene. This specimen has been described in detail. Given the scarcity of upper limb fossil of Late Pleistocene humans from East Asia, a more detailed comparative study is warranted. Here, we provide a comparative assessment of Jianping PA103 humeral inner morphology. Specifically, we analyze the diaphyseal structure of PA103 using micro-computed tomography coupled with methods of cross-sectional geometry and morphometric maps. Cross-sectional properties, continuous cortical bone thickness, and continuous bone strength of PA103 are compared to those of Neandetrals, Middle and Upper Paleolithic modern humans. The PA103 were found to be similar to those of Late Upper Paleolithic in cross-sectional shape of midshaft and biomechanical robusticity. The individual represented by PA103 is more similar to the non-dominant side of comtemporary samples, i.e. biomechanical robusticity and shape index at midshaft. Although the distribution pattern of cortical bone thickness and bone strength in modern human is similar, the cortical thickness of the humeral diaphysis do not seem to correlate strongly with bone strength. Thus, caution is warranted when equating the cortical thickness of a long bone diaphysis to its overall strength.

参考文献

[1] 刘武, 吴秀杰, 邢松, 等. 中国古人类化石[M]. 北京: 科学出版社, 2014, 264-265
[2] 周明镇, 薛祥煦. 辽宁建平及康平几种更新世晚期哺乳动物化石[J]. 古生物学报, 1958, 6:51-58
[3] 吴汝康. 辽宁建平人类上臂骨化石[J]. 古脊椎动物与古人类, 1960, 2:287-298
[4] Sparacello VS, Villotte S, Shackelford LL, et al. Patterns of humeral asymmetry among Late Pleistocene humans[J]. Comptes Rendus Palevol, 2017, 16:680-689
[5] 张国文, 胡耀武, 裴德明, 等. 大同南郊北魏墓葬群人骨的稳定同位素分析[J]. 南方文物, 2010, 1:127-131
[6] Steele DG, MeKern TW. A method for assessment of maximum long bone length and living stature from fragmentary long bones[J]. American Journal of Physical Anthropology, 1969, 31(2):215-227
[7] Trinkaus E. The palaeopathology of the Ohalo 2 Upper Paleolithic human remains: A reassessment of its appendicular robusticity, humeral asymmetry, shoulder degenerations, and costal lesion[J]. International Journal of Osteoarchaeology, 2018, 28:143-152
[8] Ruff CB. Long bone articular and diaphyseal structural in old world monkeys and apes. I: Locomotor effect[J]. American Journal of Physical Anthropology, 2002, 119:305-342
[9] Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae - A biomechanical investigation: I. Method and general patterns of variation[J]. American Journal of Physical Anthropology, 1983, 60:359-381
[10] Ruff CB, Trinkaus E, Walker A, et al. Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation[J]. American Journal of Physical Anthropology, 1993, 91:21-53
[11] Ruff CB. Biomechanical analyses of archaeological human skeletons[A]. In: Katzenberg MA, Saunders SR(Eds.). Biological Anthropology of the Human Skeleton (2nd edition)[M]. New Jersey: John Wiley & Sons, Inc. 2008, 183-206
[12] Churchill SE. Human upper body evolution in the Eurasian Later Pleistocene[D]. Albuquerque: University of New Mexico, 1994: 111-123
[13] Bondioli L, Bayle P, Dean C, et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[J]. American Journal of Physical Anthropology, 2010, 142:328-334
[14] Morimoto N, Ponce de Leon MS, Zollikofer CP. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff’s law[J]. The Anatomical Record, 2011, 294:589-609
[15] Wei P, Wallace IJ, Jashashvili T, et al. Structural analysis of the femoral diaphyses of an early modern human from Tianyuan Cave, China[J]. Quaternary International, 2017, 434:48-56
[16] Jashashvili T, Dowdeswell MR, Lebrun R, et al. Cortical structure of hallucal metatarsals and locomotor adaptations in hominoids[J]. PLOS ONE, 2015, 10:e0117905
[17] 吴汝康, 吴新智, 张振标. 人体测量方法[M]. 北京: 科学出版社, 1984, 61-64
[18] Bräuer G. Anthropologie[A]. In: Knussman R(Eds.). Anthropologie[M]. Stuttgart: Fischer Verlag, 1988: 160-232
[19] Rhodes JA, Knüsel CJ. Activity-related skeletal change in medieval humeri: Cross-sectional and architectural alterations[J]. American Journal of Physical Anthropology 128, 2005, 536-546
[20] Main RP. Ontogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius[J]. Journal of Anatomy, 2007, 210:272-293
[21] Haapasalo H, Kontulainem S, Sievänen H, et al. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: A peripheral quantitative computed tomography study of the upper arms of male tennis players[J]. Bone, 2000, 27:351-357
[22] Warden SJ, Mantila SM, Kersh ME, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men[J]. Proceedings of the National Academy of Sciences, 2014, 111:5337-5342
文章导航

/