细石叶技术的起源、二元分化及环境驱动因素
收稿日期: 2023-06-09
修回日期: 2024-02-01
网络出版日期: 2024-06-04
基金资助
国家社科基金重点项目“细石叶技术遗存基础信息采集与文化谱系研究”(22AKG001)
A discussion on the origin, dichotomous pattern of microblade technology and the environmental drivers
Received date: 2023-06-09
Revised date: 2024-02-01
Online published: 2024-06-04
在亚洲东北部地区,细石叶技术是旧石器时代晚期人类适应气候和环境的最关键因素之一。学术界围绕细石叶技术产生很多讨论,其中起源、技术演变及技术类型的区域分布是被关注的几个关键问题。细石叶技术可分为初始、成熟、简约几个技术发展阶段,压制法的运用是细石叶技术成熟的关键,细小化的特点决定了各类细石叶使用功能上的区别并不显著。因而在实践层面上,细石叶技术的判定应重视石核和产品形态、技术生产流程、产品的使用意义、强调剥片策略分析,不应限定细石叶的剥制方法。末次盛冰期时,华北地区与中国东北地区、俄罗斯远东、日本北部等所构成的“北方区域”形成分别以船形石核、两面预制的楔形石核为主的二元分化格局,虽然出现过文化上的交叉融合,但是两个区存在以宽、窄楔形石核为主的现象,二元状态没有从根本上发生改变。细石叶技术的起源、成熟、分化与H3、H2、末次盛冰期几次冷事件间有较好的耦合关系,显示出环境驱动力仍然是导致史前人类生存策略变化的关键因素。
仪明洁 , 曹彧 . 细石叶技术的起源、二元分化及环境驱动因素[J]. 人类学学报, 2024 , 43(03) : 355 -366 . DOI: 10.16359/j.1000-3193/AAS.2024.0038
During the Upper Paleolithic age, the anatomically modern human survived the extreme climatic conditions including the Heinrich event and the Last Glacial Maximum, and colonized all the continents except Antarctica, which displayed strong adaptability. In Northeast Asia, microblade technology emerged as a pivotal factor in human adaptation to climate and environment during the Upper Paleolithic period. Microblade technology has garnered widespread attention and sparked a considerable amount of discussion and debates. Among the academic research on microblade technology, its origins, technological changes, and regional distribution of different technology types are the most critical issues. The development of microblade technology can be divided into three stages: initial, developed and simple. Diverse interpretations of the concept and essence of microblade technology led to varied perspectives regarding its origins. If pressure flaking is a fundamental element of microblade technology, it may result in the potential omission of early-stage products because practically it is impossible to accurately identify each pressure product. In contrast, the utilization of pressure flaking is a crucial factor in the developed stage of microblade technology. Although the standardizations of microblades of different stages are not the same, their features of microlithization determine that their function and use, possibly in composite tools, are similar. Consequently, to achieve a more comprehensive understanding of microblade technology and its evolutionary trajectory, the research of microblade technology should focus on the form of microcores and microblades, the technology process, the usage of microblades and the analysis of reduction strategies. The microblade technology showed a distinct dichotomous pattern during the last glacial maximum (LGM). While bifacially prepared wedge-shaped cores were prevalent in the “northern area” mainly formed by northeastern China, the Russian Far East and northern Japan, boat-shaped cores dominated North China. After the LGM, the improvement of climatic conditions led to the cultural integration between the two regions, but distinct traditions still existed, i.e., narrow wedge-shaped microcores continued dominating the “northern area” and wide ones remained popular in North China. The origin, development and division of microblade technology show significant correlations with cold events such as H3, H2 and LGM, indicating that climatic and environmental factors played critical roles in the change of adaptive strategies of prehistoric humans. The varying distribution patterns of microblade technology in different regions highlight the influence of local environmental conditions and cultural interactions on technological innovation. The persistence of distinct traditions even after cultural integration underscores the enduring impact of historical and geographical factors on the development and transmission of microblade technology.
Key words: microblade; origin; boat-shaped core; wedge-shaped core; environmental drivers
[1] | 陈胜前. 思考考古学[M]. 北京: 科学出版社, 2014 |
[2] | 王幼平. 华北细石器技术的出现与发展[J]. 人类学学报, 2018, 37(4): 565-576 |
[3] | 陈宥成, 曲彤丽. 试论华北旧石器时代晚期细石核的类型、组合与分期[J]. 考古, 2022(1): 75-83 |
[4] | 贾兰坡. 中国细石器的特征和它的传统、起源与分布[J]. 古脊椎动物与古人类, 1978, 2: 137-143+159-161 |
[5] | 裴文中. 中国细石器文化略说[A]. 中国史前时期之研究[M]. 北京: 商务印书馆, 1948 |
[6] | Geobel T. The “microblade adaptation” and recolonization of Siberia during the Late Upper Pleistocene[A]. In: Elston RG, Kuhn S (Eds). Thinking Small: Global Perspectives on Microlithization[C]. Archaeological Papers of the American Anthropological Association. Vol.12. Washington, DC: American Anthropological Association, 2002, 117-131 |
[7] | Yue JP, Yang SX, Li Y, et al. Human adaptations during MIS 2: Evidence from microblade industries of Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110286 |
[8] | 陈胜前. 细石叶工艺的起源:一个理论与生态的视角[J]. 考古学研究(七), 2008, 244-264 |
[9] | 山西大学历史文化学院, 山西省考古研究所. 山西吉县柿子滩遗址S29地点发掘简报[J]. 考古, 2017, 593(2): 35-51+2 |
[10] | 北京师范大学历史学院, 山西省考古研究所. 山西沁水下川遗址小白桦圪梁地点2015年发掘报告[J]. 考古学报, 2019, 214(3): 383-408 |
[11] | 王小庆, 张家富. 龙王辿遗址第一地点细石器加工技术与年代:兼论华北地区细石器的起源[J]. 南方文物, 2016, 4: 49-56 |
[12] | Nian XM, Gao X, Xie F, et al. Chronology of the Youfang site and its implications for the emergence of microblade technology in North China[J]. Quaternary International, 2014, 347: 113-121 |
[13] | 王幼平, 汪松枝. MIS3阶段嵩山东麓旧石器发现与问题[J]. 人类学学报, 2014, 33(3): 304-314 |
[14] | 北京大学考古文博学院, 郑州市文物考古研究院. 2017年河南登封西施东区旧石器晚期遗址发掘简报[J]. 中原文物, 2018, 204(6): 54-61 |
[15] | Gómez Coutouly Y. The emergence of pressure knapping microblade technology in Northeast Asia[J]. Radiocarbon, 2018, 60(3): 821-855 |
[16] | 杜水生. 连续与断裂:重新认识下川遗址在中国旧石器文化研究上的意义[J]. 第四纪研究, 2021, 41(1): 153-163 |
[17] | 陈淳, 张萌. 细石叶工业研究的回顾与再思考[J]. 人类学学报, 2018, 37(4): 577-589 |
[18] | 赵海龙. 细石叶剥制实验研究[J]. 人类学学报, 2011, 30(1): 22-31 |
[19] | 杨石霞, 浣发祥, 王宏, 等. 广东西樵山细石叶石核的开发策略[J]. 人类学学报, 2022, 41(5): 804-815 |
[20] | Li F, Kuhn SL, Bar-Yosef O, et al. History, chronology and techno-typology of the Upper Paleolithic sequence in the Shuidonggou area, northern China[J]. Journal of World Prehistory, 2019, 32: 111-141 |
[21] | 吉林大学考古学院, 黑龙江省文物考古研究所, 中国科学院古脊椎动物与古人类研究所. 黑龙江龙江县西山头旧石器时代遗址试掘简报[J]. 考古, 2019, 626(11): 3-13 |
[22] | Guan Y, Wang XM, Wang FG, et al. Microblade remains from the Xishahe site, North China and their implications for the origin of microblade technology in Northeast Asia[J]. Quaternary International, 2020, 535: 38-47 |
[23] | Song Y, Cohen DJ, Shi J, et al. Environmental reconstruction and dating of Shizitan 29, Shanxi Province: An early microblade site in north China[J]. Journal of Archaeological Science, 2017, 79: 19-35 |
[24] | 李罡, 任雪岩, 李珺. 泥河湾盆地二道梁旧石器时代晚期遗址发掘简报[J]. 人类学学报, 2016, 4: 509-521 |
[25] | 李有骞. 黑龙江省林富旧石器遗址的发现与年代[A].见:内蒙古博物馆,内蒙古自治区文物考古研究所(编).中国北方及蒙古、贝加尔、西伯利亚地区古代文化(上)[C]. 北京: 科学出版社, 2015, 121-130 |
[26] | 岳健平, 侯亚梅, 杨石霞, 等. 黑龙江省桃山遗址2014年度发掘报告[J]. 人类学学报, 2017, 36(2): 180-192 |
[27] | 关莹, 周振宇, 王晓敏, 等. 河北阳原泥河湾盆地籍箕滩遗址发现的新材料[J]. 人类学学报, 2021, 40(1): 137-145 |
[28] | Wang XM, Xie F, Mei HJ, et al. Intensive exploitation of animal resources during Deglacial times in North China: a case study from the Yujiagou site[J]. Archaeological and Anthropological Sciences, 2019, 11(9): 4983-5000 |
[29] | Liu LL, Wei G, Sheahan B, et al. Plant exploitation of the last foragers at Shizitan in the Middle Yellow River Valley China: evidence from grinding stones[J]. Journal of Archaeological Science, 2011, 38(12): 3524-3532 |
[30] | Yi MJ, Gao X, Chen FY, et al. Combining sedentism and mobility in the Palaeolithic-Neolithic transition of northern China: the site of Shuidonggou locality 12[J]. Antiquity, 2021, 95(380): 292-309 |
[31] | Bronk RC. Bayesian analysis of radiocarbon dates[J]. Radiocarbon, 2009, 1: 337-60 |
[32] | Reimer PJ, Austin W, Bard E, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757 |
[33] | Graf KE. Uncharted territory: Late Pleistocene hunter-gatherer dispersals in the Siberian mammoth steppe[D]. Department of Anthropology, Reno: University of Nevada, 2008 |
[34] | Graf KE. Hunter-gatherer dispersals in the mammoth-steppe: Technological provisioning and land-use in the Enisei River valley, south-central Siberia[J]. Journal of Archaeological Science, 2010, 37: 210-223 |
[35] | Kuzmin YV, Keates SG, Shen C. Introduction:Microblades and Beyond[A]. In: Kuzmin YV, Keates SG, Shen C (Eds). Origin and spread of microblade technology in Northern Asia and North America[C]. Burnaby, British Columbia: Archaeology Press, Simon Fraser University, 2007, 1-6 |
[36] | Derevianko AP. The Middle to Upper Paleolithic Transition in the Altai (Mongolia and Siberia)[J]. Archaeology, Ethnology and Anthropology of Eurasia. 2001, 2(3): 70-103 |
[37] | Derevianko AP, Volkov PV. Evolution of lithic reduction technology in the course of the middle to upper paleolithic transition in the Altai Mountains[J]. Archaeology, Ethnology and Anthropology of Eurasia. 2004, 5(2): 21-35 |
[38] | Derevanko AP, Markin S. The Paleolithic of the Altai[A]. In: Derevianko AP, Shimkin DB, Powers WR (Eds). The Paleolithic of Siberia: New Discoveries and Interpretations[C]. Urbana, Chicago: University of Illinois Press, 1998, 84-106 |
[39] | Slavinsky VS, Rybin EP, Belousova NE. Variation in middle and upper paleolithic techniques of lithic reduction at Kara-Bom, The Altai Mountains: Refitting Studies[J]. Archaeology, Ethnology and Anthropology of Eurasia. 2016, 44: 39-50 |
[40] | Шуньков МВ, Белоусова НЕ. Среднепалеолитическая составляющая каменной индустрии из слоев 8-11 стоянки Усть-Каракол-1 (по данным планиграфического анализа)[J]. Проблемы археологии, этнографии, антропологии Сибири и сопредельных территорий. 2015, 11: 179-182 |
[41] | Derevianko AP, Petrin VT, Rybin EP. The Kara-Bom Site and characteristics of the middle-upper Paleolithic transition in the Altai[J]. Archaeology, Ethnology and Anthropology of Eurasia, 2000, 2: 33-51 |
[42] | Derevianko AP. Three scenarios of the middle to upper paleolithic transition: Scenario 1: the middle to upper paleolithic transition in Northern Asia[J]. Archaeology, Ethnology and Anthropology of Eurasia, 2010, 38(3), 2-32 |
[43] | Vasil’ev SA, Kuzmin YV, Orlova LA, et al. Radiocarbon-based chronology of the Paleolithic in Siberia and its relevance to the peopling of the New World[J]. Radiocarbon, 2002, 44: 503-530 |
[44] | Gladyshev SA, Olsen JW, Tabarev AV, et al. Chronology and periodization of Upper Paleolithic sites in Mongolia[J]. Archaeology, Ethnology and Anthropology of Eurasia, 2010, 38(3): 33-40 |
[45] | Zhang M. Rethinking microblade technology research in Northeastern Asia[J]. Journal of Paleolithic Archaeology. 2021, 4: 17 |
[46] | Деревянко АП. К вопросу о формировании пластинчатой индустриии микроиндустрии на Востоке Азии[J]. Археология, Этнография и Антропология Евразии, 2004, 4: 2-29 |
[47] | Gladyshev SA, Olsen JW, Tabarev AV, et al. The Upper Paleolithic of Mongolia: Recent finds and new perspectives[J]. Quaternary International, 2012, 281: 36-46 |
[48] | Yoshiaki Otsuka. The background of transitions in microblade industries in Hokkaido, northern Japan[J]. Quaternary International, 442, 33-42 |
[49] | 万晨晨, 陈全家, 方启, 等. 吉林和龙大洞遗址的调查与研究[J]. 考古学报, 2017, 1: 1-24 |
[50] | Boserup E. The economics of agrarian change under population pressure[M]. Chicago: Aldine, 1965 |
[51] | Hayden B. Research and development in the Stone Ages: Technological transitions among hunter-gatherers[J]. Current Anthropology, 1981, 22(5): 519-548 |
[52] | Hodell DA, Channell JE, Curtis JH, et al. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (640 ka)?[J]. Paleoceanography, 2008, 23(4): PA4218 |
[53] | Naafs BDA, Hefter J, Gruetzner J, et al. Warming of surface waters in the mid-latitude North Atlantic during Heinrich events[J]. Paleoceanography, 2013, 28(1): 153-163 |
[54] | Elston RG, Kuhn S. Thinking Small: Global Perspectives on Microlithization[M]. Archaeological Papers of the American Anthropological Association. Vol. 12. Washington, DC: American Anthropological Association, 2002 |
[55] | Fairbanks RG. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation[J]. Nature, 1989, 342: 637-642 |
[56] | Tozer B, Sandwell DT, Smith WHF, et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864 |
[57] | Ray N, Admas JM. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000-15,000 BP)[J]. Internet Archaeology, 2011, 11: 1-44 |
/
〈 | 〉 |