| [1] |
Feldman R, Schreiber S, Pick CG, et al. Gait, balance, mobility and muscle strength in people with anxiety compared to healthy individuals[J]. Human movement science, 2019, 67: 102513
doi: 10.1016/j.humov.2019.102513
URL
|
| [2] |
Iersel MB, Rikkert MGMO, Borm GF. A method to standardize gait and balance variables for gait velocity[J]. Gait & posture, 2007, 26(2): 226-230
doi: 10.1016/j.gaitpost.2006.09.002
URL
|
| [3] |
Alexander RMN. Walking and running: Legs and leg movements are subtly adapted to minimize the energy costs of locomotion[J]. American Scientist, 1984, 72(4): 348-354
|
| [4] |
Inman VT, Ralston HJ, TODD E. Human Walking[M]. Baltimore: Williams and Wilkins, 1981
|
| [5] |
Winter DA. Biomechanics and Motor Control of Human Movement (4th edition)[M]. Hoboken: Wiley, 2009
|
| [6] |
Noble JW, Prentice SD. Adaptation to unilateral change in lower limb mechanical properties during human walking[J]. Experimental brain research, 2006, 169: 482-495
doi: 10.1007/s00221-005-0162-3
pmid: 16328304
|
| [7] |
De Cock A, Vanrenterghem J, Willems T, et al. The trajectory of the centre of pressure during barefoot running as a potential measure for foot function[J]. Gait & posture, 2008, 27(4): 669-675
doi: 10.1016/j.gaitpost.2007.08.013
URL
|
| [8] |
Rudisch J, Jöllenbeck T, Vogt L, et al. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters[J]. Gait & posture, 2021, 85: 55-64
doi: 10.1016/j.gaitpost.2021.01.013
URL
|
| [9] |
Herssens N, Verbecque E, Hallemans A, et al. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review[J]. Gait & posture, 2018, 64: 181-190
doi: 10.1016/j.gaitpost.2018.06.012
URL
|
| [10] |
吴立娟. 我国4-11岁儿童足型参数测量和动态足底压力分析[D]. 博士学位毕业论文, 北京: 北京体育大学, 2011
|
| [11] |
Kobsar D, Olson C, Paranjape R, et al. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer[J]. Gait & posture, 2014, 39(1): 553-557
doi: 10.1016/j.gaitpost.2013.09.008
URL
|
| [12] |
刘义坤.一定速度下不同年龄女性穿跑鞋行走的下肢生物力学研究[A].见:中国解剖学会.2021年年会论文文摘汇编[C]. 《解剖学杂志》编辑部, 2021, 68-69
|
| [13] |
汤澄清, 和焕胤, 佟苏洋, 等. 基于生物力学的踏痕形成与特点研究[J]. 中国刑警学院学报, 2018, 4: 106-108
|
| [14] |
Lindle RS, Metter EJ, Lynch NA, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr[J]. Journal of applied physiology, 1997, 83(5): 1581-1587
doi: 10.1152/jappl.1997.83.5.1581
pmid: 9375323
|
| [15] |
隋心怡. 7-15岁青少年下肢形态及足底压力分布特征研究[D]. 硕士学位毕业论文, 广州: 广州体育学院, 2018
|
| [16] |
Wearing SC, Hennig EM, Byrne NM, et al. The biomechanics of restricted movement in adult obesity[J]. Obesity reviews, 2006, 7(1): 13-24
doi: 10.1111/j.1467-789X.2006.00215.x
pmid: 16436099
|
| [17] |
王琪. 4-6岁肥胖儿童跑步步态特征的运动学研究[D]. 硕士学位毕业论文, 太原: 山西师范大学, 2020
|
| [18] |
曾玉冰. 男性肥胖大学生步行与慢跑步态特征分析[D]. 硕士学位毕业论文, 大连: 大连理工大学, 2021
|
| [19] |
宗鹭冶. 步行疲劳对老年人步态影响的生物力学研究[D]. 硕士学位毕业论文, 长春: 吉林大学, 2022
|
| [20] |
Granacher U, Wolf I, Wehrle A, et al. Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults[J]. Journal of neuroengineering and rehabilitation, 2010, 7(1): 1-12
doi: 10.1186/1743-0003-7-1
|
| [21] |
Kowalski KL, Boolani A, Christie AD. Sex differences in the impact of state and trait fatigue on gait variability[J]. Human Movement Science, 2021, 80: 102884.
doi: 10.1016/j.humov.2021.102884
URL
|
| [22] |
杨子琪, 方子龙.不同衰弱状态的老年人三种不同行走任务的步态特征研究[A].见:中国体育科学学会运动医学分会,等(编).2022年第七届广州运动与健康国际学术研讨会论文集[C]. 北京: 中国体育科学学会, 2022, 243-244
|
| [23] |
Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people[J]. Cmaj, 2005, 173(5): 489-495.
pmid: 16129869
|
| [24] |
吴梦余, 于卫华, 戈倩, 等. 社区老年人不同衰弱状态下双重任务行走步态特征的研究[J]. 护理学杂志, 2019, 34(1): 16-19
|
| [25] |
陈琪. 北欧式行走与健步走下肢步态特征比较研究[D]. 硕士学位毕业论文, 南京: 南京师范大学, 2019
|
| [26] |
史洪飞, 魏晓辉, 蒋敬, 等. 基于6种不同行走状态下步幅特征对3种体态特征推定的研究[J]. 中国人民公安大学学报(自然科学版), 2021, 27(4): 5-13
|
| [27] |
王乃军, 李树屏.健康中年人不同速度长程行走时步态及生理功能特征研究[A].见:中国力学学会,中国生物医学工程学会,生物力学专业委员会(编).第十四届全国运动生物力学学术交流大会论文集[C]. 上海: 《医用生物力学》编辑部, 2010, 115-119
|
| [28] |
Thomas KS, Russell DM, Van Lunen BL, et al. The impact of speed and time on gait dynamics[J]. Human movement science, 2017, 54: 320-330.
doi: S0167-9457(17)30433-5
pmid: 28641172
|
| [29] |
Taniguchi Y, Kitamura A, Seino S, et al. Gait performance trajectories and incident disabling dementia among community-dwelling older Japanese[J]. Journal of the American Medical Directors Association, 2017, 18(2): 192. e13-192. e20
|
| [30] |
Silder A, Heiderscheit B, Thelen DG. Active and passive contributions to joint kinetics during walking in older adults[J]. Journal of biomechanics, 2008, 41(7): 1520-1527
doi: 10.1016/j.jbiomech.2008.02.016
pmid: 18420214
|
| [31] |
刘敏, 李玉茹, 王健, 等. 不同步速条件下超重肥胖老年人步态运动学特征[J]. 中国老年学杂志, 2022, 42(13): 3216-3220
|
| [32] |
Hebenstreit F, Leibold A, Krinner S, et al. Effect of walking speed on gait sub phase durations[J]. Human movement science, 2015, 43: 118-124
doi: 10.1016/j.humov.2015.07.009
pmid: 26256534
|
| [33] |
曹钰琳, 董宇. 行走速度对步幅特征影响研究[J]. 法制博览, 2018, 1: 90-91
|
| [34] |
高毅. 不同步速对步幅影响的比较研究[J]. 河北公安警察职业学院学报, 2012, 12(2): 5-8
|
| [35] |
白啸天, 霍洪峰. 行走支撑期足弓变化规律与足功能转换机制[J]. 医用生物力学, 2022, 37(6): 1165-1170
|
| [36] |
明安华. 不同跑速对男大学生下肢关节负荷特征研究[D]. 硕士学位毕业论文, 北京: 北京体育大学, 2020
|
| [37] |
高雅. 不同性别大众跑者跑步下肢生物力学特征的研究[D]. 硕士学位毕业论文, 南京: 南京体育学院, 2020
|
| [38] |
Kim S, Lockhart TE. The effects of 10% front load carriage on the likelihood of slips and falls[J]. Industrial health, 2008, 46(1): 32-39
doi: 10.2486/indhealth.46.32
pmid: 18270448
|
| [39] |
Simpkins C, Ahn J, Yang F. Effects of anterior load carriage on gait parameters: A systematic review with meta-analysis[J]. Applied Ergonomics, 2022, 98: 103587
doi: 10.1016/j.apergo.2021.103587
URL
|
| [40] |
穆成成. 穿袜足底压力特征与四种典型负重方式关联性研究[D]. 硕士学位毕业论文, 北京: 中国人民公安大学, 2021
|
| [41] |
王建设, 张泽昊, 余贝贝, 等.不同负重和背包形式对足底压力特征影响研究[A].见:中国体育科学学会(编).第十二届全国体育科学大会论文摘要汇编[C]. 北京: 中国体育科学学会, 2022, 152-153
|
| [42] |
Simpkins C, Ahn J, Yang F. Effects of anteriorly-loaded treadmill walking on dynamic gait stability in young adults[J]. Gait & Posture, 2022, 94: 79-84
doi: 10.1016/j.gaitpost.2022.02.027
URL
|
| [43] |
武明, 季林红, 金德闻, 等. 人体背部负重对于步态特征的影响及相应补偿策略的实验研究[J]. 生物医学工程学杂志, 2003, (4): 574-579
|
| [44] |
陈建军. 负重状态下中学生步态分析研究[J]. 体育研究与教育, 2019, 34(1): 94-96
|
| [45] |
Hollman JH, Watkins MK, Imhoff AC, et al. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions[J]. Gait & posture, 2016, 43: 204-209
doi: 10.1016/j.gaitpost.2015.09.024
URL
|
| [46] |
Chiu SL, Chang CC, Chou LS. Inter-joint coordination of overground versus treadmill walking in young adults[J]. Gait & posture, 2015, 41(1): 316-318
doi: 10.1016/j.gaitpost.2014.09.015
URL
|
| [47] |
Strutzenberger G, Leutgeb L, Claußen L, et al. Gait on slopes: Differences in temporo-spatial, kinematic and kinetic gait parameters between walking on a ramp and on a treadmill[J]. Gait & Posture, 2022, 91: 73-78
doi: 10.1016/j.gaitpost.2021.09.196
URL
|
| [48] |
Dingwell JB, Cusumano JP, Cavanagh PR, et al. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking[J]. J. Biomech. Eng, 2001, 123(1): 27-32
doi: 10.1115/1.1336798
URL
|
| [49] |
Donlin MC, Ray NT, Higginson JS. User-driven treadmill walking promotes healthy step width after stroke[J]. Gait & posture, 2021, 86: 256-259
doi: 10.1016/j.gaitpost.2021.03.031
URL
|
| [50] |
Legrand T, Younesian H, Gélinas-Trudel C, et al. Influence of the overground walking speed control modality: Modification to the walk ratio and spatio-temporal parameters of gait[J]. Gait & Posture, 2021, 83: 256-261
doi: 10.1016/j.gaitpost.2020.10.029
URL
|