人类学学报 ›› 2025, Vol. 44 ›› Issue (05): 917-926.doi: 10.16359/j.1000-3193/AAS.2025.0069cstr: 32091.14.j.1000-3193/AAS.2025.0069
• 同位素、孢粉、古蛋白 • 上一篇
唐思源1,2(
), 刘驷统1,2, 周凯1, 饶慧芸1, 吴秀杰1, 付巧妹1,2(
)
收稿日期:2025-04-07
修回日期:2025-07-10
出版日期:2025-10-15
发布日期:2025-10-13
通讯作者:
付巧妹,研究员,主要从事分子古生物学研究。E-mail: fuqiaomei@ivpp.ac.cn
作者简介:唐思源,硕士研究生,主要研究方向为分子古生物学研究。E-mail: tangsiyuan24@mails.ucas.ac.cn
基金资助:
TANG Siyuan1,2(
), LIU Sitong1,2, ZHOU Kai1, RAO Huiyun1, WU Xiujie1, FU Qiaomei1,2(
)
Received:2025-04-07
Revised:2025-07-10
Online:2025-10-15
Published:2025-10-13
摘要:
安徽东至华龙洞遗址处于东亚直立人向早期智人过渡的关键时段,古人类化石的形态学研究表明其可能代表了东亚最早的准现代人。本文通过研究华龙洞遗址动物化石的蛋白质保存状况来评估遗址化石的保存状况,旨在不破坏古人类化石的情况下对遗址的蛋白质保存情况有初步了解。本研究选取了与该遗址已出土古人类化石同为1号地点出土的49例未知物种的动物化石进行分析,研究结果表明,骨骼样品40例均没有内源性的胶原蛋白特征峰,牙本质样品9例中的2例发现有丰富的胶原蛋白特征峰;牙釉质样品7例中的6例样品检测到内源性的特定肽段信号。综上,华龙洞遗址部分牙齿样品的蛋白质保存情况较好,可以进行大规模的古人类化石筛选工作,遗址的蛋白质保存情况支持对华龙洞遗址古人类化石的进一步分析。
中图分类号:
唐思源, 刘驷统, 周凯, 饶慧芸, 吴秀杰, 付巧妹. 安徽东至华龙洞遗址动物化石蛋白质保存状况初探[J]. 人类学学报, 2025, 44(05): 917-926.
TANG Siyuan, LIU Sitong, ZHOU Kai, RAO Huiyun, WU Xiujie, FU Qiaomei. A preliminary study of protein preservation in animal fossils from the Hualongdong site in Dongzhi County, Anhui[J]. Acta Anthropologica Sinica, 2025, 44(05): 917-926.
| 编号No. | 样品Sample | Am/P | C/P | 结果Result | 编号No. | 样品Sample | Am/P | C/P | 结果Result | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 牙本质dentine | 0.011 | 0.068 | Negative | 21 | 骨骼bone | 0.011 | 0.177 | Negative | |
| 牙釉质enamel | 0 | 0.187 | Positive | 22 | 骨骼bone | 0.013 | 0.140 | Negative | ||
| 2 | 牙本质dentine | 0.016 | 0.175 | Negative | 23 | 骨骼bone | 0.016 | 0.160 | Negative | |
| 牙釉质enamel | 0 | 0.168 | Positive | 24 | 骨骼bone | 0 | 0.196 | Negative | ||
| 3 | 牙本质dentine | 0.012 | 0.182 | Negative | 25 | 骨骼bone | 0.011 | 0.188 | Negative | |
| 牙釉质enamel | 0 | 0.146 | Positive | 26 | 骨骼bone | 0.014 | 0.164 | Negative | ||
| 4 | 牙本质dentine | 0.012 | 0.136 | Negative | 27 | 骨骼bone | 0 | 0.170 | Negative | |
| 牙釉质enamel | 0 | 0.213 | Positive | 28 | 骨骼bone | 0 | 0.191 | Negative | ||
| 5 | 牙本质dentine | 0.014 | 0.172 | Negative | 29 | 骨骼bone | 0 | 0.179 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 30 | 骨骼bone | 0.011 | 0.110 | Negative | ||
| 6 | 牙本质dentine | 0.012 | 0.132 | Positive* | 31 | 骨骼bone | 0 | 0.224 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 32 | 骨骼bone | 0.019 | 0.251 | Negative | ||
| 7 | 牙本质dentine | 0.011 | 0.221 | Negative | 33 | 骨骼bone | 0.021 | 0.166 | Negative | |
| 牙釉质enamel | 0 | 0.210 | Negative | 34 | 骨骼bone | 0.021 | 0.191 | Negative | ||
| 8 | 牙本质dentine | 0.012 | 0.183 | Bovidae/Cervidae | 35 | 骨骼bone | 0.016 | 0.197 | Negative | |
| 36 | 骨骼bone | 0.018 | 0.165 | Negative | ||||||
| 9 | 牙本质dentine | 0.012 | 0.180 | Bovidae/Cervidae | 37 | 骨骼bone | 0.018 | 0.126 | Negative | |
| 38 | 骨骼bone | 0.020 | 0.170 | Negative | ||||||
| 10 | 骨骼bone | 0.019 | 0.212 | Negative | 39 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 11 | 骨骼bone | 0.014 | 0.201 | Negative | 40 | 骨骼bone | 0.015 | 0.172 | Negative | |
| 12 | 骨骼bone | 0.018 | 0.141 | Negative | 41 | 骨骼bone | 0.022 | 0.156 | Negative | |
| 13 | 骨骼bone | 0 | 0.171 | Negative | 42 | 骨骼bone | 0.019 | 0.175 | Negative | |
| 14 | 骨骼bone | 0.016 | 0.181 | Negative | 43 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 15 | 骨骼bone | 0.014 | 0.157 | Negative | 44 | 骨骼bone | 0.015 | 0.200 | Negative | |
| 16 | 骨骼bone | 0.012 | 0.179 | Negative | 45 | 骨骼bone | 0.012 | 0.237 | Negative | |
| 17 | 骨骼bone | 0.019 | 0.172 | Negative | 46 | 骨骼bone | 0.015 | 0.091 | Negative | |
| 18 | 骨骼bone | 0.013 | 0.145 | Negative | 47 | 骨骼bone | 0.018 | 0.213 | Negative | |
| 19 | 骨骼bone | 0.011 | 0.098 | Negative | 48 | 骨骼bone | 0.015 | 0.140 | Negative | |
| 20 | 骨骼bone | 0.013 | 0.119 | Negative | 49 | 骨骼bone | 0.017 | 0.152 | Negative |
表1 样品列表及MALDI质谱仪分析结果
Tab.1 Sample list and MALDI analysis results
| 编号No. | 样品Sample | Am/P | C/P | 结果Result | 编号No. | 样品Sample | Am/P | C/P | 结果Result | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 牙本质dentine | 0.011 | 0.068 | Negative | 21 | 骨骼bone | 0.011 | 0.177 | Negative | |
| 牙釉质enamel | 0 | 0.187 | Positive | 22 | 骨骼bone | 0.013 | 0.140 | Negative | ||
| 2 | 牙本质dentine | 0.016 | 0.175 | Negative | 23 | 骨骼bone | 0.016 | 0.160 | Negative | |
| 牙釉质enamel | 0 | 0.168 | Positive | 24 | 骨骼bone | 0 | 0.196 | Negative | ||
| 3 | 牙本质dentine | 0.012 | 0.182 | Negative | 25 | 骨骼bone | 0.011 | 0.188 | Negative | |
| 牙釉质enamel | 0 | 0.146 | Positive | 26 | 骨骼bone | 0.014 | 0.164 | Negative | ||
| 4 | 牙本质dentine | 0.012 | 0.136 | Negative | 27 | 骨骼bone | 0 | 0.170 | Negative | |
| 牙釉质enamel | 0 | 0.213 | Positive | 28 | 骨骼bone | 0 | 0.191 | Negative | ||
| 5 | 牙本质dentine | 0.014 | 0.172 | Negative | 29 | 骨骼bone | 0 | 0.179 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 30 | 骨骼bone | 0.011 | 0.110 | Negative | ||
| 6 | 牙本质dentine | 0.012 | 0.132 | Positive* | 31 | 骨骼bone | 0 | 0.224 | Negative | |
| 牙釉质enamel | 0 | 0.170 | Positive | 32 | 骨骼bone | 0.019 | 0.251 | Negative | ||
| 7 | 牙本质dentine | 0.011 | 0.221 | Negative | 33 | 骨骼bone | 0.021 | 0.166 | Negative | |
| 牙釉质enamel | 0 | 0.210 | Negative | 34 | 骨骼bone | 0.021 | 0.191 | Negative | ||
| 8 | 牙本质dentine | 0.012 | 0.183 | Bovidae/Cervidae | 35 | 骨骼bone | 0.016 | 0.197 | Negative | |
| 36 | 骨骼bone | 0.018 | 0.165 | Negative | ||||||
| 9 | 牙本质dentine | 0.012 | 0.180 | Bovidae/Cervidae | 37 | 骨骼bone | 0.018 | 0.126 | Negative | |
| 38 | 骨骼bone | 0.020 | 0.170 | Negative | ||||||
| 10 | 骨骼bone | 0.019 | 0.212 | Negative | 39 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 11 | 骨骼bone | 0.014 | 0.201 | Negative | 40 | 骨骼bone | 0.015 | 0.172 | Negative | |
| 12 | 骨骼bone | 0.018 | 0.141 | Negative | 41 | 骨骼bone | 0.022 | 0.156 | Negative | |
| 13 | 骨骼bone | 0 | 0.171 | Negative | 42 | 骨骼bone | 0.019 | 0.175 | Negative | |
| 14 | 骨骼bone | 0.016 | 0.181 | Negative | 43 | 骨骼bone | 0.015 | 0.183 | Negative | |
| 15 | 骨骼bone | 0.014 | 0.157 | Negative | 44 | 骨骼bone | 0.015 | 0.200 | Negative | |
| 16 | 骨骼bone | 0.012 | 0.179 | Negative | 45 | 骨骼bone | 0.012 | 0.237 | Negative | |
| 17 | 骨骼bone | 0.019 | 0.172 | Negative | 46 | 骨骼bone | 0.015 | 0.091 | Negative | |
| 18 | 骨骼bone | 0.013 | 0.145 | Negative | 47 | 骨骼bone | 0.018 | 0.213 | Negative | |
| 19 | 骨骼bone | 0.011 | 0.098 | Negative | 48 | 骨骼bone | 0.015 | 0.140 | Negative | |
| 20 | 骨骼bone | 0.013 | 0.119 | Negative | 49 | 骨骼bone | 0.017 | 0.152 | Negative |
图2 样品的红外光谱数据分布示意图 A.牙本质、骨骼和牙釉质的C/P值分布示意图B represents distribution diagram of C/P ratios of dentine, bone and enamel;B.牙本质和骨骼的Am/P值分布示意图 represents distribution diagram of Am/P ratios of dentine and bone;括号内是有效数据的数量The number in parentheses is the count of valid data;IQR—interquartile range
Fig.2 Distribution diagram of the infrared spectrum data of the sample
| [1] | Wu XJ, Pei SW, Cai YJ, et al. Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 9820-9824 |
| [2] | 宫希成, 郑龙亭, 邢松, 等. 安徽东至华龙洞出土的人类化石[J]. 人类学学报, 2014, 33(4): 427-436 |
| [3] | 陈胜前, 罗虎. 安徽东至县华龙洞旧石器时代遗址发掘简报[J]. 考古, 2012, 4: 7-13 |
| [4] | 同号文, 吴秀杰, 董哲, 等. 安徽东至华龙洞古人类遗址哺乳动物化石的初步研究[J]. 人类学学报, 2018, 37(2): 284-305 |
| [5] | 裴树文, 蔡演军, 董哲, 等. 安徽东至华龙洞遗址洞穴演化与古人类活动[J]. 人类学学报, 2022, 41(4): 593-607 |
| [6] | 董哲, 战世佳. 安徽东至县华龙洞旧石器时代遗址出土石制品研究[J]. 东南文化, 2015, 6: 63-71 |
| [7] | 董哲, 裴树文, 盛锦朝, 等. 安徽东至华龙洞古人类遗址2014-2016年出土的石制品[J]. 第四纪研究, 2017, 37(4): 778-788 |
| [8] | 李潇丽, 董哲, 裴树文, 等. 安徽东至华龙洞洞穴发育与古人类生存环境[J]. 海洋地质与第四纪地质, 2017, 37(3): 169-179 |
| [9] | 刘武, 吴秀杰, 邢松. 更新世中期中国古人类演化区域连续性与多样性的化石证据[J]. 人类学学报, 2019, 38(4): 473-490 |
| [10] | Jiangzuo QG, Werdelin L, Zhang K, et al. Prionailurus kurteni (Felidae, Carnivora), a new species of small felid from the late Middle Pleistocene fossil hominin locality of Hualongdong, southern China[J]. Annales Zoologici Fennici, 2024, 61(1): 335-342 |
| [11] | Wu XJ, Pei SW, Cai YJ, et al. Morphological description and evolutionary significance of 300 ka hominin facial bones from Hualongdong, China[J]. Journal of Human Evolution, 2021, 161: 103052 |
| [12] | Xing S, Wu XJ, Liu W, et al. Middle Pleistocene human femoral diaphyses from Hualongdong, Anhui Province, China[J]. American Journal of Physical Anthropology, 2021, 174(2): 285-298 |
| [13] | Wu XJ, Pei SW, Cai YJ, et al. Morphological and morphometric analyses of a late Middle Pleistocene hominin mandible from Hualongdong, China[J]. Journal of Human Evolution, 2023, 182: 103411 |
| [14] | 吴秀杰, 张伟. 中国古人类颅容量的推算方法比较[J]. 人类学学报, 2019, 38(4): 513-524 |
| [15] | 刘武, 惠家明, 何嘉宁, 等. 门齿孔位置在中国古人类化石与现代人群的表现及其演化意义[J]. 人类学学报, 2021, 40(5): 739-750 |
| [16] | 刘武, 吴秀杰. 中更新世晚期中国古人类化石的形态多样性及其演化意义[J]. 人类学学报, 2022, 41(4): 563-575 |
| [17] | Liu W, Athreya S, Xing S, et al. Hominin evolution and diversity: A comparison of earlier-Middle and later-Middle Pleistocene hominin fossil variation in China[J]. Philosophical Transactions of the Royal Society B, 2022, 377(1849): 20210040 |
| [18] | 刘武. 二十一世纪中国人类演化研究的发现、认识与理论探索[J]. 人类学学报, 2024, 43(6): 881-899 |
| [19] | Chen FH, Welker F, Shen CC, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau[J]. Nature, 2019, 569: 409-412 |
| [20] | Xia H, Zhang DJ, Wang J, et al. Middle and Late Pleistocene Denisovan subsistence at Baishiya Karst Cave[J]. Nature, 2024, 632: 108-113 |
| [21] | Welker F, Hajdinjak M, Talamo S, et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne[J]. Proceedings of the National Academy of Sciences, 2016, 113: 201605834 |
| [22] | Welker F, Ramos-Madrigal J, Gutenbrunner P, et al. The dental proteome of Homo antecessor[J]. Nature, 2020, 580: 235-238 |
| [23] |
Demeter F, Shackelford L, Zanolli C, et al. A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos[J]. Nature Communications, 2022, 13: 2557
doi: 10.1038/s41467-022-29923-z pmid: 35581187 |
| [24] | Welker F, Ramos-Madrigal J, Kuhlwilm M, et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine[J]. Nature, 2019, 576: 262-265 |
| [25] | Paterson RS, Mackie M, Capobianco A, et al. A 20+ Ma Old Enamel Proteome from Canada's High Arctic Reveals Diversification of Rhinocerotidae in the Middle Eocene-Oligocene[CP/OL]. bioRxiv, 2024. 06.07.597871. doi: https://doi.org/10.1101/2024.06.07.597871 |
| [26] | Demarchi B, Stiller j, Grealy A, et al. Ancient proteins resolve controversy over the identity of Genyornis eggshell[J]. Proceedings of the National Academy of Sciences, 2022, 119 (43): e2109326119 |
| [27] | Demarchi B, Mackie M, Li ZH, et al. Survival of mineral-bound peptides into the Miocene[J]. eLife, 2022, 11: e82849 |
| [28] | Demarchi B, Hall S, Roncal-Herrero T, et al. Protein sequences bound to mineral surfaces persist into deep time[J]. eLife, 2016, 5: e17092 |
| [29] |
Stolarski J, Drake J, Coronado I, et al. First paleoproteome study of fossil fish otoliths and the pristine preservation of the biomineral crystal host[J]. Scientific Reports, 2023, 13: 3822
doi: 10.1038/s41598-023-30537-8 pmid: 36882485 |
| [30] | Cappellini E, Welker F, Pandolfi L, et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny[J]. Nature, 2019, 574: 103-107 |
| [31] |
Cappellini E, Jensen LJ, Szklarczyk D, et al. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins[J]. Journal of Proteome Research, 2012, 11(2): 917-926
doi: 10.1021/pr200721u pmid: 22103443 |
| [32] |
Rybczynski N, Gosse J C, Richard Harington C, et al. Mid-Pliocene warm-period deposits in the high arctic yield insight into camel evolution[J]. Nature Communications, 2013, 4: 1550
doi: 10.1038/ncomms2516 pmid: 23462993 |
| [33] | Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity[J]. Nature Genetics, 2013, 4(4): 336-344 |
| [34] | Sawafuji R, Cappellini E, Nagaoka T, et al. Proteomic profiling of archaeological human bone[J]. Royal Society Open Science, 2017, 4(6): 161004 |
| [35] | Tsutaya T, Sawafuji R, Taurozzi AJ, et al. A male Denisovan mandible from Pleistocene Taiwan[J]. Science, 2025, 388(6743): 176-180 |
| [36] | Presslee S, Penkman K, Fischer R, et al. Assessment of different screening methods for selecting palaeontological bone samples for peptide sequencing[J]. Journal of Proteomics, 2021, 230: 103986 |
| [37] | Hollund HI, Ariese F, Fernandes R, et al. Testing an alternative High-throughput tool for investigating bone Diagenesis: FTIR in attenuated Total reflection (ATR) mode[J]. Archaeometry, 2013, 55: 507-532 |
| [38] | Scaggion C, Marinato M, Dal Sasso G, et al. A fresh perspective on infrared spectroscopy as a prescreening method for molecular and stable isotopes analyses on ancient human bones[J]. Scientific Reports, 2024, 14: 1028 |
| [39] | Buckley M, Collins M, Thomas-Oates J, et al. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrometr, 2009, 23(23): 3843-3854 |
| [40] | Buckley M, Fraser S, Herman J, et al. Species identification of archaeological marine mammals using collagen fingerprinting[J]. Journal of Archaeological Science, 2014, 41(Suppl. C): 631-641 |
| [41] | Welker F, Soressi M, Rendu W, et al. Using ZooMS to identify fragmentary bone from the late middle / early upper Palaeolithic sequence of les Cottes, France[J]. Journal of Archaeological Science, 2015, 54: 279-286 |
| [42] | Harvey VL, Daugnora L, Buckley M, et al. Species identification of ancient Lithuanian fish remains using collagen fingerprinting[J]. Journal of Archaeological Science, 2018, 98: 102-111 |
| [43] |
Lacruz RS, Habelitz S, Wright JT, et al. Dental Enamel Formation and Implications for Oral Health and Disease[J]. Physiological Reviews, 2017, 97(3): 939-993
doi: 10.1152/physrev.00030.2016 pmid: 28468833 |
| [44] | Kontopoulos I, Penkman K, Mullin VE, et al. Screening archaeological bone for palaeogenetic and palaeoproteomic studies[J]. PLoS ONE, 2020, 15(6): e0235146 |
| [45] |
Pal Chowdhury M, Wogelius R, Manning PL, et al. Collagen deamidation in archaeological bone as an assessment for relative decay rates[J]. Archaeometry, 2019, 61(6): 1382-1398
doi: 10.1111/arcm.12492 |
| [46] | Taurozzi AJ, Ruther PL, Patramanis I, et al. Deep-time phylogenetic inference by paleoproteomic analysis of dental enamel[J]. Nature Protocols, 2024, 19(5): 2085-2116 |
| [47] | Porto IM, Laure HJ, Tykot RH, et al. Recovery and identification of mature enamel proteins in ancient teeth[J]. European Journal of Oral Sciences, 2011, 119: 83-87 |
| [1] | 郑明聪, 汪静怡, 严毅, 陈逸迎, 吴妍. 安徽华龙洞遗址大额牛的食性[J]. 人类学学报, 2025, 44(05): 895-905. |
| [2] | 刘博轩, 刘驷统, 金泽田, 邓国栋, 吴秀杰. 从大额牛牙齿看华龙洞人的狩猎行为[J]. 人类学学报, 2025, 44(05): 862-873. |
| [3] | 刘驷统, 刘博轩, 金泽田, 邓国栋, 同号文, 吴秀杰. 华龙洞遗址出土的哺乳动物距骨化石[J]. 人类学学报, 2025, 44(05): 816-835. |
| [4] | 常美静, 李强, 倪喜军, 张玄, 同号文. 非飞行小哺乳动物化石反映的华龙洞人生存环境[J]. 人类学学报, 2025, 44(05): 799-815. |
| [5] | 裴树文, 董哲, 耿帅杰, 叶芷, 马东东, 张亚盟, 金泽田. 华龙洞遗址发现的石制品及人类行为[J]. 人类学学报, 2025, 44(05): 765-778. |
| [6] | 金泽田, 吴秀杰, 邓国栋, 刘武. 华龙洞人6号头骨的面貌复原及其形态特点[J]. 人类学学报, 2025, 44(05): 754-764. |
| [7] | 蔡演军, 裴树文, 金泽田. 安徽东至华龙洞遗址沉积演化过程及其年代[J]. 人类学学报, 2025, 44(05): 742-753. |
| [8] | 刘武, 吴秀杰. 华龙洞古人类化石及其在人类演化上的意义[J]. 人类学学报, 2025, 44(05): 727-741. |
| [9] | 裴树文, 蔡演军, 董哲, 同号文, 盛锦朝, 金泽田, 吴秀杰, 刘武. 安徽东至华龙洞遗址洞穴演化与古人类活动[J]. 人类学学报, 2022, 41(04): 593-607. |
| [10] | 郑利平; 武仙竹; 金普军; 常云平. 湖北白龙洞遗址骨化石表面的黑色膜壳状物质[J]. 人类学学报, 2012, 31(04): 364-370. |
| [11] | 斯·伟纳,斯·希格尔,奥·巴·约瑟夫. 关于以色列国的基巴拉和哈约尼姆两洞穴的微矿物的研究:对于考古纪录中灰烬沉积的认识[J]. 人类学学报, 1995, 14(04): 340-351. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京ICP证05002819号-3